3 research outputs found
Incoherent scattering in the ionosphere from twisted radar beams
Twenty-odd years ago, scientists managed to produce several new techniques for manipulating certain properties of laser and microwave radiation. These new properties made it possible for the radiation to contain a lot more information than what was previously known. What they had discovered was that light could be twisted, thereby not only carrying polarization, also known as spin angular momentum (SAM) but also orbital angular momentum (OAM).Radar beams are used by scientists to probe the earth’s ionosphere. By measuring the echo of the radar waves one can deduce a lot of information, such as density and temperature of the plasma. In this thesis we will expand an existing program (iscatspb0.m) which computes the spectrum of plasma fluctuations as seen with an incoherent scatter radar, to having it incorporate radar beams carrying OAM, to see what new information of the plasma can be obtained.The three major findings in this thesis were what magnitude of the integer l is needed in order for the contribution of OAM to equal the contribution for the beam opening angle, how much the radar beam opening angle affected the measurements and in what way the spectrum obtained by a twisted beam is affected by different flow
Incoherent scattering in the ionosphere from twisted radar beams
Twenty-odd years ago, scientists managed to produce several new techniques for manipulating certain properties of laser and microwave radiation. These new properties made it possible for the radiation to contain a lot more information than what was previously known. What they had discovered was that light could be twisted, thereby not only carrying polarization, also known as spin angular momentum (SAM) but also orbital angular momentum (OAM).Radar beams are used by scientists to probe the earth’s ionosphere. By measuring the echo of the radar waves one can deduce a lot of information, such as density and temperature of the plasma. In this thesis we will expand an existing program (iscatspb0.m) which computes the spectrum of plasma fluctuations as seen with an incoherent scatter radar, to having it incorporate radar beams carrying OAM, to see what new information of the plasma can be obtained.The three major findings in this thesis were what magnitude of the integer l is needed in order for the contribution of OAM to equal the contribution for the beam opening angle, how much the radar beam opening angle affected the measurements and in what way the spectrum obtained by a twisted beam is affected by different flow