1,098 research outputs found

    Black strings in (4+1)-dimensional Einstein-Yang-Mills theory

    Full text link
    We study two classes of static uniform black string solutions in a (4+1)-dimensional SU(2) Einstein-Yang-Mills model. These configurations possess a regular event horizon and corresponds in a 4-dimensional picture to axially symmetric black hole solutions in an Einstein-Yang-Mills-Higgs-U(1)-dilaton theory. In this approach, one set of solutions possesses a nonzero magnetic charge, while the other solutions represent black holes located in between a monopole-antimonopole pair. A detailed analysis of the solutions' properties is presented, the domain of existence of the black strings being determined. New four dimensional solutions are found by boosting the five dimensional configurations. We also present an argument for the non-existence of finite mass hyperspherically symmetric black holes in SU(2) Einstein-Yang-Mills theory.Comment: 19 Revtex pages, 27 eps-figures; discussion on rotating black holes modifie

    Palatini Variational Principle for NN-Dimensional Dilaton Gravity

    Get PDF
    We consider a Palatini variation on a general NN-Dimensional second order, torsion-free dilaton gravity action and determine the resulting equations of motion. Consistency is checked by considering the restraint imposed due to invariance of the matter action under simple coordinate transformations, and the special case of N=2 is examined. We also examine a sub-class of theories whereby a Palatini variation dynamically coincides with that of the "ordinary" Hilbert variational principle; in particular we examine a generalized Brans-Dicke theory and the associated role of conformal transformations.Comment: 16 pages, LaTe

    Rotating Boson Stars and Q-Balls

    Full text link
    We consider axially symmetric, rotating boson stars. Their flat space limits represent spinning Q-balls. We discuss their properties and determine their domain of existence. Q-balls and boson stars are stationary solutions and exist only in a limited frequency range. The coupling to gravity gives rise to a spiral-like frequency dependence of the boson stars. We address the flat space limit and the limit of strong gravitational coupling. For comparison we also determine the properties of spherically symmetric Q-balls and boson stars.Comment: 22 pages, 18 figure

    A Note on the correspondence between Qubit Quantum Operations and Special Relativity

    Full text link
    We exploit a well-known isomorphism between complex hermitian 2Ă—22\times 2 matrices and R4\mathbb{R}^4, which yields a convenient real vector representation of qubit states. Because these do not need to be normalized we find that they map onto a Minkowskian future cone in E1,3\mathbb{E}^{1,3}, whose vertical cross-sections are nothing but Bloch spheres. Pure states are represented by light-like vectors, unitary operations correspond to special orthogonal transforms about the axis of the cone, positive operations correspond to pure Lorentz boosts. We formalize the equivalence between the generalized measurement formalism on qubit states and the Lorentz transformations of special relativity, or more precisely elements of the restricted Lorentz group together with future-directed null boosts. The note ends with a discussion of the equivalence and some of its possible consequences.Comment: 6 pages, revtex, v3: revised discussio

    Focusing and the Holographic Hypothesis

    Get PDF
    The ``screen mapping" introduced by Susskind to implement 't Hooft's holographic hypothesis is studied. For a single screen time, there are an infinite number of images of a black hole event horizon, almost all of which have smaller area on the screen than the horizon area. This is consistent with the focusing equation because of the existence of focal points. However, the {\it boundary} of the past (or future) of the screen obeys the area theorem, and so always gives an expanding map to the screen, as required by the holographic hypothesis. These considerations are illustrated with several axisymmetric static black hole spacetimes.Comment: 8 pages, plain latex, 5 figures included using psfi

    Averaged Energy Conditions and Evaporating Black Holes

    Get PDF
    In this paper the averaged weak (AWEC) and averaged null (ANEC) energy conditions, together with uncertainty principle-type restrictions on negative energy (``quantum inequalities''), are examined in the context of evaporating black hole backgrounds in both two and four dimensions. In particular, integrals over only half-geodesics are studied. We determine the regions of the spacetime in which the averaged energy conditions are violated. In all cases where these conditions fail, there appear to be quantum inequalities which bound the magnitude and extent of the negative energy, and hence the degree of the violation. The possible relevance of these results for the validity of singularity theorems in evaporating black hole spacetimes is discussed.Comment: Sections 2.1 and 2.2 have been revised and some erroneous statements corrected. The main conclusions and the figures are unchanged. 27 pp, plain Latex, 3 figures available upon reques

    Algebraic approach to quantum field theory on non-globally-hyperbolic spacetimes

    Get PDF
    The mathematical formalism for linear quantum field theory on curved spacetime depends in an essential way on the assumption of global hyperbolicity. Physically, what lie at the foundation of any formalism for quantization in curved spacetime are the canonical commutation relations, imposed on the field operators evaluated at a global Cauchy surface. In the algebraic formulation of linear quantum field theory, the canonical commutation relations are restated in terms of a well-defined symplectic structure on the space of smooth solutions, and the local field algebra is constructed as the Weyl algebra associated to this symplectic vector space. When spacetime is not globally hyperbolic, e.g. when it contains naked singularities or closed timelike curves, a global Cauchy surface does not exist, and there is no obvious way to formulate the canonical commutation relations, hence no obvious way to construct the field algebra. In a paper submitted elsewhere, we report on a generalization of the algebraic framework for quantum field theory to arbitrary topological spaces which do not necessarily have a spacetime metric defined on them at the outset. Taking this generalization as a starting point, in this paper we give a prescription for constructing the field algebra of a (massless or massive) Klein-Gordon field on an arbitrary background spacetime. When spacetime is globally hyperbolic, the theory defined by our construction coincides with the ordinary Klein-Gordon field theory on aComment: 21 pages, UCSBTH-92-4

    Continuous Hawking-Page transitions in Einstein-scalar gravity

    Get PDF
    We investigate continuous Hawking-Page transitions in Einstein's gravity coupled to a scalar field with an arbitrary potential in the weak gravity limit. We show that this is only possible in a singular limit where the black-hole horizon marginally traps a curvature singularity. Depending on the subleading terms in the potential, a rich variety of continuous phase transitions arise. Our examples include second and higher order, including the Berezinskii-Kosterlitz-Thouless type. In the case when the scalar is dilaton, the condition for a continuous phase transition lead to (asymptotically) linear-dilaton background. We obtain the scaling laws of thermodynamic functions, as well as the viscosity coefficients near the transition. In the limit of weak gravitational interactions, the bulk viscosity asymptotes to a universal constant, independent of the details of the scalar potential. As a byproduct of our analysis we obtain a one-parameter family of kink solutions in arbitrary dimension d that interpolate between AdS near the boundary and linear-dilaton background in the deep interior. The continuous Hawking-Page transitions found here serve as holographic models for normal-to superfluid transitions.Comment: 35 pages + appendice

    Stress-energy tensor in the Bel-Szekeres space-time

    Get PDF
    In a recent work an approximation procedure was introduced to calculate the vacuum expectation value of the stress-energy tensor for a conformal massless scalar field in the classical background determined by a particular colliding plane wave space-time. This approximation procedure consists in appropriately modifying the space-time geometry throughout the causal past of the collision center. This modification in the geometry allows to simplify the boundary conditions involved in the calculation of the Hadamard function for the quantum state which represents the vacuum in the flat region before the arrival of the waves. In the present work this approximation procedure is applied to the non-singular Bel-Szekeres solution, which describes the head on collision of two electromagnetic plane waves. It is shown that the stress-energy tensor is unbounded as the killing-Cauchy horizon of the interaction is approached and its behavior coincides with a previous calculation in another example of non-singular colliding plane wave space-time.Comment: 17 pages, LaTex file, 2 PostScript figure

    A simple theorem to generate exact black hole solutions

    Full text link
    Under certain conditions imposed on the energy-momentum tensor, a theorem that characterizes a two-parameter family of static and spherically symmetric solutions to Einstein's field equations (black holes), is proved. A discussion on the asymptotics, regularity, and the energy conditions is provided. Examples that include the best known exact solutions within these symmetries are considered. A trivial extension of the theorem includes the cosmological constant {\it ab-initio}, providing then a three-parameter family of solutions.Comment: 14 pages; RevTex; no figures; typos corrected; references adde
    • …
    corecore