2,925 research outputs found

    Split-gate quantum point contacts with tunable channel length

    Get PDF
    We report on developing split-gate quantum point contacts (QPCs) that have a tunable length for the transport channel. The QPCs were realized in a GaAs/AlGaAs heterostructure with a two- dimensional electron gas (2DEG) below its surface. The conventional design uses 2 gate fingers on the wafer surface which deplete the 2DEG underneath when a negative gate voltage is applied, and this allows for tuning the width of the QPC channel. Our design has 6 gate fingers and this provides additional control over the form of the electrostatic potential that defines the channel. Our study is based on electrostatic simulations and experiments and the results show that we developed QPCs where the effective channel length can be tuned from about 200 nm to 600 nm. Length-tunable QPCs are important for studies of electron many-body effects because these phenomena show a nanoscale dependence on the dimensions of the QPC channel

    Stabilizing nuclear spins around semiconductor electrons via the interplay of optical coherent population trapping and dynamic nuclear polarization

    Get PDF
    We experimentally demonstrate how coherent population trapping (CPT) for donor-bound electron spins in GaAs results in autonomous feedback that prepares stabilized states for the spin polarization of nuclei around the electrons. CPT was realized by excitation with two lasers to a bound-exciton state. Transmission studies of the spectral CPT feature on an ensemble of electrons directly reveal the statistical distribution of prepared nuclear spin states. Tuning the laser driving from blue to red detuned drives a transition from one to two stable states. Our results have importance for ongoing research on schemes for dynamic nuclear spin polarization, the central spin problem and control of spin coherence.Comment: 5 pages, 4 figure

    Compact cryogenic Kerr microscope for time-resolved studies of electron spin transport in microstructures

    Get PDF
    A compact cryogenic Kerr microscope for operation in the small volume of high-field magnets is described. It is suited for measurements both in Voigt and Faraday configuration. Coupled with a pulsed laser source, the microscope is used to measure the time-resolved Kerr rotation response of semiconductor microstructures with ~1 micron spatial resolution. The microscope was designed to study spin transport, a critical issue in the field of spintronics. It is thus possible to generate spin polarization at a given location on a microstructure and probe it at a different location. The operation of the microscope is demonstrated by time-resolved measurements of micrometer distance diffusion of spin polarized electrons in a GaAs/AlGaAs heterojunction quantum well at 4.2 K and 7 Tesla

    Adapting agriculture in 2050 in Flevoland; perspectives from stakeholders

    Get PDF
    Although recently more research has gone into farm level studies, little attention has been given to the variety of responses of farmers, considering their characteristics, objectives and the socio-economic, technological and political contexts (Reidsma et al, 2010). In the Agri-Adapt project we focus on farm level adaptation within an agricultural region considering the socio-economic context of 2050

    Microwave spectroscopy on magnetization reversal dynamics of nanomagnets with electronic detection

    Get PDF
    We demonstrate a detection method for microwave spectroscopy on magnetization reversal dynamics of nanomagnets. Measurement of the nanomagnet anisotropic magnetoresistance was used for probing how magnetization reversal is resonantly enhanced by microwave magnetic fields. We used Co strips of 2 um x 130 nm x 40 nm, and microwave fields were applied via an on-chip coplanar wave guide. The method was applied for demonstrating single domain-wall resonance, and studying the role of resonant domain-wall dynamics in magnetization reversal

    Farm Management in Australia: The Way Forward

    Get PDF
    This paper summarises the outcomes of a National Workshop in Farm Management, 5-6 December 2002, organised by the University of Sydney, Faculty of Rural Management, Orange. At this Workshop leading farmers, industry leaders, corporate representatives, academics, researchers and extension officers explored the future of farm management (education, research and consultancy) in Australia. Major outcomes were that farm management practice is proceeding informally to undertake decisions supporting socially and ecologically friendly, sustainable commercial production agriculture. However the risks of lack of integration, a reductionist approach to only on-farm practice, stagnation of academic programs to respond to leading edge industry initiatives, as well as ill-defined boundaries for farm management research were identified. The analysis indicated that formal educational models, research and extension-consultancy frameworks of an holistic nature, and a multiple bottom line perspective, were appropriate avenues for the future development of farm management practice and research. Workshop participants perceived that a farm management strand emphasising business management rather than technology could be a better educational model. Also there was an emphasis in highlighting the importance of linked development and partnership amongst the different players. The Workshop created the conditions for development of networks among industry, education and consultative research.Farm Management,
    • …
    corecore