40 research outputs found
Glucose, Fructose, and Urate Transporters in the Choroid Plexus Epithelium
The choroid plexus plays a central role in the regulation of the microenvironment of the central nervous system by secreting the majority of the cerebrospinal fluid and controlling its composition, despite that it only represents approximately 1% of the total brain weight. In addition to a variety of transporter and channel proteins for solutes and water, the choroid plexus epithelial cells are equipped with glucose, fructose, and urate transporters that are used as energy sources or antioxidative neuroprotective substrates. This review focuses on the recent advances in the understanding of the transporters of the SLC2A and SLC5A families (GLUT1, SGLT2, GLUT5, GLUT8, and GLUT9), as well as on the urate-transporting URAT1 and BCRP/ABCG2, which are expressed in choroid plexus epithelial cells. The glucose, fructose, and urate transporters repertoire in the choroid plexus epithelium share similar features with the renal proximal tubular epithelium, although some of these transporters exhibit inversely polarized submembrane localization. Since choroid plexus epithelial cells have high energy demands for proper functioning, a decline in the expression and function of these transporters can contribute to the process of age-associated brain impairment and pathophysiology of neurodegenerative diseases
Distribution of Monocarboxylate Transporters in Brain and Choroid Plexus Epithelium
The choroid plexus (CP) plays central roles in regulating the microenvironment of the central nervous system by secreting the majority of cerebrospinal fluid (CSF) and controlling its composition. A monolayer of epithelial cells of CP plays a significant role in forming the blood–CSF barrier to restrict the movement of substances between the blood and ventricles. CP epithelial cells are equipped with transporters for glucose and lactate that are used as energy sources. There are many review papers on glucose transporters in CP epithelial cells. On the other hand, distribution of monocarboxylate transporters (MCTs) in CP epithelial cells has received less attention compared with glucose transporters. Some MCTs are known to transport lactate, pyruvate, and ketone bodies, whereas others transport thyroid hormones. Since CP epithelial cells have significant carrier functions as well as the barrier function, a decline in the expression and function of these transporters leads to a poor supply of thyroid hormones as well as lactate and can contribute to the process of age-associated brain impairment and pathophysiology of neurodegenerative diseases. In this review paper, recent findings regarding the distribution and significance of MCTs in the brain, especially in CP epithelial cells, are summarized
Effect of olmesartan on oxidative stress in hemodialysis patients
The effect of olmesartan, an inverse angiotensin II type 1 receptor blocker (ARB), on oxidative stress in hemodialysis (HD) patients is not fully understood, and has not been widely investigated in vitro or in vivo. We determined the amount of oxidized albumin and albumin hydroperoxides formed during incubation in the absence and presence of olmesartan by high-performance liquid chromatography (HPLC) and by a ferrous oxidation xylenol assay in an in vitro study. Six hypertensive HD patients were treated with 40 mg of olmesartan once daily, and blood pressure monitoring (BPM) was performed after 0, 4, and 8 weeks of treatment. The ratio of oxidized to unoxidized albumin was also determined. The oxidized albumin ratios and levels of albumin hydroperoxides were significantly decreased in a concentration-dependent manner in the presence of olmesartan, compared with the absence of olmesartan (p<0.05) in in vitro studies. In HD patients, olmesartan also significantly reduced systolic and diastolic blood pressure after 4 weeks, with a further significant decrease after 8 weeks. The ratio of oxidized to unoxidized albumin was markedly decreased after 4 weeks and these lower levels were maintained at 8 weeks. Olmesartan effectively lowered the extent of oxidation of albumin in both in vitro and in vivo studies, and this effect might confer benefits beyond a reduction in blood pressure.8 page(s
Transfer free graphene growth on SiO2 subsrate at 250oC
Low-temperature growth, as well as the transfer free growth on substrates, is the major concern of graphene research for its practical applications. Here we propose a simple method to achieve the transfer free graphene growth on SiO2 covered Si (SiO2/Si) substrate at 250 °C based on a solid-liquid-solid reaction. The key to this approach is the catalyst metal, which is not popular for graphene growth by chemical vapor deposition. A catalyst metal film of 500 nm thick was deposited onto an amorphous C (50 nm thick) coated SiO2/Si substrate. The sample was then annealed at 250 °C under vacuum condition. Raman spectra measured after the removal of the catalyst by chemical etching showed intense G and 2D peaks together with a small D and intense SiO2 related peaks, confirming the transfer free growth of multilayer graphene on SiO2/Si. The domain size of the graphene confirmed by optical microscope and atomic force microscope was about 5 μm in an average. Thus, this approach will open up a new route for transfer free graphene growth at low temperatures