28 research outputs found

    Sensitivity reduction by stable controllers for MIMO infinite dimensional systems via the tangential nevanlinna-pick interpolation

    Get PDF
    Cataloged from PDF version of article.We study the problem of finding a stable stabilizing controller that satisfies a desired sensitivity level for an MIMO infinite dimensional system. The systems we consider have finitely many simple transmission zeros in (C) over bar (+), but they are allowed to possess infinitely many poles in C+. We compute both upper and lower bounds of the minimum sensitivity achievable by a stable controller via the tangential Nevanlinna-Pick interpolation. We also obtain stable controllers attaining such an upper bound. To illustrate the results, we discuss a repetitive control system as an application of the proposed method

    Stable controllers for robust stabilization of systems with infinitely many unstable poles

    Get PDF
    This paper studies the problem of robust stabilization by a stable controller for a linear time-invariant single-input single-output infinite dimensional system. We consider a class of plants having finitely many simple unstable zeros but possibly infinitely many unstable poles. First we show that the problem can be reduced to an interpolation-minimization by a unit element. Next, by the modified Nevanlinna-Pick interpolation, we obtain both lower and upper bounds on the multiplicative perturbation under which the plant can be stabilized by a stable controller. In addition, we find stable controllers to provide robust stability. We also present a numerical example to illustrate the results and apply the proposed method to a repetitive control system. © 2013 Elsevier B.V. All rights reserved

    Tangential Nevanlinna-Pick interpolation for strong stabilization of MIMO distributed parameter systems

    Get PDF
    We study the problem of finding stable controllers that stabilize a multi-input multi-output distributed parameter system while simultaneously reducing the sensitivity of the system. The plants we consider have finitely many unstable transmission zeros, but they can possess infinitely many unstable poles. Using the tangential Nevanlinna-Pick interpolation with boundary conditions, we obtain both upper and lower bounds of the minimum sensitivity that can be achieved by stable controllers. We also derive a method to find stable controllers for sensitivity reduction. In addition, we apply the proposed method to a repetitive control system. © 2012 IEEE

    Sensitivity reduction by stable controllers for MIMO infinite dimensional systems via the tangential nevanlinna-pick interpolation

    Get PDF
    We study the problem of finding a stable stabilizing controller that satisfies a desired sensitivity level for an MIMO infinite dimensional system. The systems we consider have finitely many simple transmission zeros in C +, but they are allowed to possess infinitely many poles in C +. We compute both upper and lower bounds of the minimum sensitivity achievable by a stable controller via the tangential Nevanlinna-Pick interpolation. We also obtain stable controllers attaining such an upper bound. To illustrate the results, we discuss a repetitive control system as an application of the proposed method. © 1963-2012 IEEE

    Sensitivity reduction by strongly stabilizing controllers for MIMO distributed parameter systems

    Get PDF
    This note investigates a sensitivity reduction problem by stable stabilizing controllers for a linear time-invariant multi-input multioutput distributed parameter system. The plant we consider has finitely many unstable zeros, which are simple and blocking, but can possess infinitely many unstable poles. We obtain a necessary condition and a sufficient condition for the solvability of the problem, using the matrix Nevanlinna-Pick interpolation with boundary conditions. We also develop a necessary and sufficient condition for the solvability of the interpolation problem, and show an algorithm to obtain the solutions. Our method to solve the interpolation problem is based on the Schur-Nevanlinna algorithm. © 2012 IEEE

    Sensitivity Reduction by Strongly Stabilizing Controllers for MIMO Distributed Parameter Systems

    Get PDF
    This note investigates a sensitivity reduction problem by stable stabilizing controllers for a linear time-invariant multi-input multioutput distributed parameter system. The plant we consider has finitely many unstable zeros, which are simple and blocking, but can possess infinitely many unstable poles. We obtain a necessary condition and a sufficient condition for the solvability of the problem, using the matrix Nevanlinna-Pick interpolation with boundary conditions. We also develop a necessary and sufficient condition for the solvability of the interpolation problem, and show an algorithm to obtain the solutions. Our method to solve the interpolation problem is based on the Schur-Nevanlinna algorithm

    Stabilization of systems with asynchronous sensors and controllers

    No full text

    Supervisory Control of Discrete-Event Systems Under Attacks

    No full text
    corecore