168 research outputs found

    Comparative Study of Regulatory T Cell Function of Human CD25+CD4+ T Cells from Thymocytes, Cord Blood, and Adult Peripheral Blood

    Get PDF
    CD25+CD4+ regulatory T cells suppress T cell activation and regulate multiple immune reactions in in vitro and in vivo studies. To define the regulatory function of human CD25+CD4+ T cells at various stages of maturity, we investigated in detail the functional differences of CD25+CD4+ T cells from thymocytes, cord blood (CB), and adult peripheral blood (APB). CB CD25+CD4+ T cells displayed low-FOXP3 protein expression level and had no suppressive activity. In contrast, CD25+CD4+ T cells from thymocytes or APB expressed high expression level of FOXP3 protein associated with significant suppressive activity. Although CB CD25+CD4+ T cells exhibited no suppressive activity, striking suppressive activity was observed following expansion in culture associated with increased FOXP3 expression and a shift from the CD45RA+ to the CD45RA− phenotype. These functional differences in CD25+CD4+ T cells from Thy, CB, and APB hence suggest a pathway of maturation for Treg in the peripheral immune system

    RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase.

    Get PDF
    Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. The mechanism by which AID triggers SHM and CSR has been explained by two distinct models. In the DNA deamination model, AID converts cytidine bases in DNA into uridine. The uridine is recognized by the DNA repair system, which produces DNA strand breakages and point mutations. In the alternative model, RNA edited by AID is responsible for triggering CSR and SHM. However, RNA deamination by AID has not been demonstrated. Here we found that C-to-T and G-to-A mutations accumulated in hepatitis B virus (HBV) nucleocapsid DNA when AID was expressed in HBV-replicating hepatic cell lines. AID expression caused C-to-T mutations in the nucleocapsid DNA of RNase H-defective HBV, which does not produce plus-strand viral DNA. Furthermore, the RT-PCR products of nucleocapsid viral RNA from AID-expressing cells exhibited significant C-to-T mutations, whereas viral RNAs outside the nucleocapsid did not accumulate C-to-U mutations. Moreover, AID was packaged within the nucleocapsid by forming a ribonucleoprotein complex with HBV RNA and the HBV polymerase protein. The encapsidation of the AID protein with viral RNA and DNA provides an efficient environment for evaluating AID's RNA and DNA deamination activities. A bona fide RNA-editing enzyme, apolipoprotein B mRNA editing catalytic polypeptide 1, induced a similar level of C-to-U mutations in nucleocapsid RNA as AID. Taken together, the results indicate that AID can deaminate the nucleocapsid RNA of HBV

    Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75NTR and their effect on NF-κB activation

    Get PDF
    AbstractThe common neurotrophin receptor p75NTR, a member of the tumor necrosis factor (TNF) receptor superfamily, plays an important role in several cellular signaling cascades, including that leading to apoptosis. FAP-1 (Fas-associated phosphatase-1), which binds to the cytoplasmic tail of Fas, was originally identified as a negative regulator of Fas-mediated apoptosis. Here we have shown by co-immunoprecipitation that FAP-1 also binds to the p75NTR cytoplasmic domain in vivo through the interaction between the third PDZ domain of FAP-1 and C-terminal Ser-Pro-Val residues of p75NTR. Furthermore, cells expressing a FAP-1/green fluorescent protein showed intracellular co-localization of FAP-1 and p75NTR at the plasma membrane. To elucidate the functional role of this physical interaction, we examined TRAF6 (TNF receptor-associated factor 6)-mediated NF-κB activation and tamoxifen-induced apoptosis in 293T cells expressing p75NTR. The results revealed that TRAF6-mediated NF-κB activation was suppressed by p75NTR and that the p75NTR-mediated NF-κB suppression was reduced by FAP-1 expression. Interestingly, a mutant of the p75NTR intracellular domain with a single substitution of a Met for Val in its C-terminus, which cannot interact with FAP-1, displayed enhanced pro-apoptotic activity in 293T transfected cells. Thus, similar to Fas, FAP-1 may be involved in suppressing p75NTR-mediated pro-apoptotic signaling through its interaction with three C-terminal amino acids (tSPV). Thus, FAP-1 may regulate p75NTR-mediated signal transduction by physiological interaction through its third PDZ domain

    好酸球性多発血管炎性肉芽腫症の在院死亡に関する疫学的検討

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 門脇 孝, 東京大学教授 小林 廉毅, 東京大学特任教授 清水 孝雄, 東京大学特任准教授 瀧本 英樹, 東京大学講師 藤尾 圭志University of Tokyo(東京大学

    Impact of the omicron phase on a highly advanced medical facility in Japan

    Get PDF
    BackgroundEight waves of the coronavirus disease 2019 (COVID-19) epidemic have been observed in Japan. This retrospective study was conducted to clarify the clinical characteristics of pediatric COVID-19 patients.MethodsWe studied 121 patients admitted to the Jichi Children's Medical Center Tochigi between April 2020 and March 2023. Incidence of pediatric COVID-19 in Tochigi Prefecture was used to examine hospitalization and severe illness rates.ResultsThe mean age of the patients was 3 years and 8 months. One hundred and eleven patients (91.7%) were hospitalized after January 2022 (after the 6th wave), when the Omicron strain became endemic in Japan. Convulsions occurred in 30 patients (24.8%), all of whom were admitted after the 6th wave. Twenty-three of the 30 patients had no underlying disease. Eleven patients (9.1%) were diagnosed with acute encephalopathy. One patient died due to hemorrhagic shock and encephalopathy syndrome and two had sequelae after the 6th wave. The patient who died due to encephalopathy had hypercytokinemia. In the Tochigi Prefecture, the number of pediatric COVID-19 patients increased after the 6th wave, but the hospitalization rate declined. The rate of severe illness did not change before the end of 5th and after the 6th wave.ConclusionAlthough the rate of severe illness in patients with pediatric COVID-19 did not increase after the 6th wave, some patients had complicated critical illnesses. Systemic inflammatory reaction was considered to have been associated with the severe encephalopathy

    APOBEC3 deaminases induce hypermutation in human papillomavirus 16 DNA upon beta interferon stimulation

    Get PDF
    Apolipoprotein B mRNA-editing catalytic polypeptide 3 (APOBEC3) proteins are interferon (IFN)-inducible antiviral factors that counteract various viruses such as hepatitis B virus (HBV) and human immunodeficiency virus type 1 (HIV-1) by inducing cytidine (C)-to-uracil (U) mutations in viral DNA and inhibiting reverse transcription. However, whether APOBEC3 proteins (A3s) can hypermutate human papillomavirus (HPV) viral DNA and exhibit antiviral activity in human keratinocyte remains unknown. Here we examined the involvement of A3s in the HPV life cycle using cervical keratinocyte W12 cells, which are derived from low-grade lesions and retain episomal HPV16 genomes in their nuclei. We focused on the viral E2 gene as a potential target for A3-mediated hypermutation because this gene is frequently found as a boundary sequence in integrated viral DNA. Treatment of W12 cells with beta interferon (IFN-ß) increased expression levels of A3s such as A3A, A3F, and A3G and induced C-to-U conversions in the E2 gene in a manner depending on inhibition of uracil DNA glycosylase. Exogenous expression of A3A and A3G also induced E2 hypermutation in W12 cells. IFN-ß-induced hypermutation was blocked by transfection of small interfering RNAs against A3G (and modestly by those against A3A). However, the HPV16 episome level was not affected by overexpression of A3A and A3G in W12 cells. This study demonstrates that endogenous A3s upregulated by IFN-ß induce E2 hypermutation of HPV16 in cervical keratinocytes, and a pathogenic consequence of E2 hypermutation is discussed. © 2014, American Society for Microbiology

    RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase

    Get PDF
    Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. The mechanismby which AID triggers SHMand CSR has been explained by two distinct models. In the DNA deamination model, AID converts cytidine bases in DNA into uridine. The uridine is recognized by the DNA repair system, which produces DNA strand breakages and point mutations. In the alternative model, RNA edited by AID is responsible for triggering CSR and SHM. However, RNA deamination by AID has not been demonstrated. Here we found that C-to-T and G-to-A mutations accumulated in hepatitis B virus (HBV) nucleocapsid DNA when AID was expressed in HBV replicating hepatic cell lines. AID expression caused C-to-T mutations in the nucleocapsid DNA of RNase H-defective HBV, which does not produce plus-strand viral DNA. Furthermore, the RT-PCR products of nucleocapsid viral RNA from AID-expressing cells exhibited significant C-to-T mutations, whereas viral RNAs outside the nucleocapsid did not accumulate C-to-U mutations. Moreover, AID was packaged within the nucleocapsid by forming a ribonucleoprotein complex with HBV RNA and the HBV polymerase protein. The encapsidation of the AID protein with viral RNA and DNA provides an efficient environment for evaluating AID\u27s RNA and DNA deamination activities. A bona fide RNA-editing enzyme, apolipoprotein B mRNA editing catalytic polypeptide 1, induced a similar level of C-to-U mutations in nucleocapsid RNA as AID. Taken together, the results indicate that AID can deaminate the nucleocapsid RNA of HBV
    corecore