486 research outputs found

    Small scale wind tunnel model investigation of hybrid high lift systems combining upper surface blowing with the internally blown flap

    Get PDF
    A small-scale wind tunnel test of a two engine hybrid model with upper surface blowing on a simulated expandable duct internally blown flap was accomplished in a two phase program. The low wing Phase I model utilized 0.126c radius Jacobs/Hurkamp flaps and 0.337c radius Coanda flaps. The high wing Phase II model was utilized for continued studies on the Jacobs/Hurkamp flap. Principal study areas included: basic data both engines operative and with an engine out, control flap utilization, horizontal tail effectiveness, spoiler effectiveness, USB nacelle deflector study and USB/IBF pressure ratio effects

    The NASA controls-structures interaction technology program

    Get PDF
    The interaction between a flexible spacecraft structure and its control system is commonly referred to as controls-structures interaction (CSI). The CSI technology program is developing the capability and confidence to integrate the structure and control system, so as to avoid interactions that cause problems and to exploit interactions to increase spacecraft capability. A NASA program has been initiated to advance CSI technology to a point where it can be used in spacecraft design for future missions. The CSI technology program is a multicenter program utilizing the resources of the NASA Langley Research Center (LaRC), the NASA Marshall Space Flight Center (MSFC), and the NASA Jet Propulsion Laboratory (JPL). The purpose is to describe the current activities, results to date, and future activities of the NASA CSI technology program

    Information Cascades and the Collapse of Cooperation

    Get PDF
    In various types of structured communities newcomers choose their interaction partners by selecting a role-model and copying their social networks. Participants in these networks may be cooperators who contribute to the prosperity of the community, or cheaters who do not and simply exploit the cooperators. For newcomers it is beneficial to interact with cooperators but detrimental to interact with cheaters. However, cheaters and cooperators usually cannot be identified unambiguously and newcomers’ decisions are often based on a combination of private and public information. We use evolutionary game theory and dynamical networks to demonstrate how the specificity and sensitivity of those decisions can dramatically affect the resilience of cooperation in the community. We show that promiscuous decisions (high sensitivity, low specificity) are advantageous for cooperation when the strength of competition is weak; however, if competition is strong then the best decisions for cooperation are risk-adverse (low sensitivity, high specificity). Opportune decisions based on private and public information can still support cooperation but suffer of the presence of information cascades that damage cooperation, especially in the case of strong competition. Our research sheds light on the way the interplay of specificity and sensitivity in individual decision-making affects the resilience of cooperation in dynamical structured communities

    Rule-based epidemic models

    Get PDF
    Rule-based models generalise reaction-based models with reagents that have internal state and may be bound together to form complexes, as in chemistry. An important class of system that would be intractable if expressed as reactions or ordinary differential equations can be efficiently simulated when expressed as rules. In this paper we demonstrate the utility of the rule-based approach for epidemiological modelling presenting a suite of seven models illustrating the spread of infectious disease under different scenarios: wearing masks, infection via fomites and prevention by hand-washing, the concept of vector-borne diseases, testing and contact tracing interventions, disease propagation within motif-structured populations with shared environments such as schools, and superspreading events. Rule-based models allow to combine transparent modelling approach with scalability and compositionality and therefore can facilitate the study of aspects of infectious disease propagation in a richer context than would otherwise be feasible

    Rule-based epidemic models

    Get PDF
    Rule-based models generalise reaction-based models with reagents that have internal state and may be bound together to form complexes, as in chemistry. An important class of system that would be intractable if expressed as reactions or ordinary differential equations can be efficiently simulated when expressed as rules. In this paper we demonstrate the utility of the rule-based approach for epidemiological modelling presenting a suite of seven models illustrating the spread of infectious disease under different scenarios: wearing masks, infection via fomites and prevention by hand-washing, the concept of vector-borne diseases, testing and contact tracing interventions, disease propagation within motif-structured populations with shared environments such as schools, and superspreading events. Rule-based models allow to combine transparent modelling approach with scalability and compositionality and therefore can facilitate the study of aspects of infectious disease propagation in a richer context than would otherwise be feasible

    Global and national estimates of the number of healthcare workers at high risk of SARS-CoV-2 infection

    Get PDF
    In order to promote equitable and efficient allocation of coronavirus disease 2019 (COVID-19) vaccines, the World Health Organization (WHO) Strategic Advisory Group of Experts on Immunization (WHO-SAGE-I) has published a 'Roadmap for Prioritizing Uses of COVID-19 Vaccines in the Context of Limited Supply', outlining which groups should be prioritized under various supply scenarios [1]. Healthcare workers (HCWs) at high or very high risk of acquiring and transmitting severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are included in Stage I when supply is very limited

    Statistical and agent-based modelling of the transmissibility of different SARS-CoV-2 variants in England and impact of different interventions

    Get PDF
    The English SARS-CoV-2 epidemic has been affected by the emergence of new viral variants such as B.1.177, Alpha and Delta, and changing restrictions. We used statistical models and the agent-based model Covasim, in June 2021, to estimate B.1.177 to be 20% more transmissible than the wild type, Alpha to be 50-80% more transmissible than B.1.177 and Delta to be 65-90% more transmissible than Alpha. Using these estimates in Covasim (calibrated 1 September 2020 to 20 June 2021), in June 2021, we found that due to the high transmissibility of Delta, resurgence in infections driven by the Delta variant would not be prevented, but would be strongly reduced by delaying the relaxation of restrictions by one month and with continued vaccination. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'

    Modelling the potential impact of mask use in schools and society on COVID-19 control in the UK.

    Get PDF
    As the UK reopened after the first wave of the COVID-19 epidemic, crucial questions emerged around the role for ongoing interventions, including test-trace-isolate (TTI) strategies and mandatory masks. Here we assess the importance of masks in secondary schools by evaluating their impact over September 1-October 23, 2020. We show that, assuming TTI levels from August 2020 and no fundamental changes in the virus's transmissibility, adoption of masks in secondary schools would have reduced the predicted size of a second wave, but preventing it would have required 68% or 46% of those with symptoms to seek testing (assuming masks' effective coverage 15% or 30% respectively). With masks in community settings but not secondary schools, the required testing rates increase to 76% and 57%

    Annotation of rule-based models with formal semantics to enable creation, analysis, reuse and visualization

    Get PDF
    Motivation: Biological systems are complex and challenging to model and therefore model reuse is highly desirable. To promote model reuse, models should include both information about the specifics of simulations and the underlying biology in the form of metadata. The availability of computationally tractable metadata is especially important for the effective automated interpretation and processing of models. Metadata are typically represented as machine-readable annotations which enhance programmatic access to information about models. Rule-based languages have emerged as a modelling framework to represent the complexity of biological systems. Annotation approaches have been widely used for reaction-based formalisms such as SBML. However, rule-based languages still lack a rich annotation framework to add semantic information, such as machine-readable descriptions, to the components of a model. Results: We present an annotation framework and guidelines for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen languages. We adapt widely adopted annotation approaches to rule-based models. We initially propose a syntax to store machine-readable annotations and describe a mapping between rule-based modelling entities, such as agents and rules, and their annotations. We then describe an ontology to both annotate these models and capture the information contained therein, and demonstrate annotating these models using examples. Finally, we present a proof of concept tool for extracting annotations from a model that can be queried and analyzed in a uniform way. The uniform representation of the annotations can be used to facilitate the creation, analysis, reuse and visualization of rule-based models. Although examples are given, using specific implementations the proposed techniques can be applied to rule-based models in general

    Modelling the potential impact of mask use in schools and society on COVID-19 control in the UK

    Get PDF
    As the UK reopened after the first wave of the COVID-19 epidemic, crucial questions emerged around the role for ongoing interventions, including test-trace-isolate (TTI) strategies and mandatory masks. Here we assess the importance of masks in secondary schools by evaluating their impact over September 1–October 23, 2020. We show that, assuming TTI levels from August 2020 and no fundamental changes in the virus’s transmissibility, adoption of masks in secondary schools would have reduced the predicted size of a second wave, but preventing it would have required 68% or 46% of those with symptoms to seek testing (assuming masks’ effective coverage 15% or 30% respectively). With masks in community settings but not secondary schools, the required testing rates increase to 76% and 57%
    • …
    corecore