33 research outputs found
Recommended from our members
Future changes in wet and dry season characteristics in CMIP5 and CMIP6 simulations
Climate change will result in more dry days and longer dry spells, however, the resulting impacts on crop growth depend on the timing of these longer dry spells in the annual cycle. Using an ensemble of Coupled Model Intercomparison Project Phase 5 and Phase 6 (CMIP5 and CMIP6) simulations, and a range of emission scenarios, here we examine changes in wet and dry spell characteristics under future climate change across the extended tropics in wet and dry seasons separately. Delays in the wet seasons by up to two weeks are projected by 2070-2099 across South America, Southern Africa, West Africa and the Sahel. An increase in both mean and maximum dry spell length during the dry season is found across Central and South America, Southern Africa and Australia, with a reduction in dry season rainfall also found in these regions. Mean dry season dry spell lengths increase by 5-10 days over north-east South America and south-west Africa. However, changes in dry spell length during the wet season are much smaller across the tropics with limited model consensus. Mean dry season maximum temperature increases are found to be up to 3C higher than mean wet season maximum temperature increases over South America, Southern Africa and parts of Asia. Longer dry spells, fewer wet days, and higher temperatures during the dry season may lead to increasing dry season aridity, and have detrimental consequences for perennial crops
Recommended from our members
Consistent trends in dry spell length in recent observations and future projections
We identify global observed changes in dry-spell characteristics that are consistent with future projections and involve common physical drivers. Future projections of longer dry spells in the dry season increase vegetation water stress and can negatively impact perennial vegetation. Lengthening dry season dry spells of up to ∼2 days per decade over South America and southern Africa and shortening of similar magnitude over West Africa display a qualitatively consistent pattern to future projected changes under the SSP2-4.5 intermediate greenhouse gas emissions scenario. By combining a range of present-day climate model experiments, recent trends are linked with both natural and human-caused drivers. Longer dry season dry spells over South America are associated with relative warming of North Atlantic sea surface temperatures and amplified warming over land compared with adjacent oceans; both of which are projected to continue under further warming, suggesting a common driver for recent trends and future projections
Recommended from our members
The impact of air-sea coupling and ocean biases on the seasonal cycle of southern West African precipitation
The biannual seasonal rainfall regime over the southern part of West Africa is characterised by two wet seasons, separated by the `Little Dry Season' in July-August. Lower rainfall totals during this intervening dry season may be detrimental for crop yields over a region with a dense population that depends on agricultural output. Coupled Model Intercomparison Project Phase 5 (CMIP5) models do not correctly capture this seasonal regime, and instead generate a single wet season, peaking at the observed timing of the Little Dry Season. Hence, the realism of future climate projections over this region is questionable. Here, the representation of the Little Dry Season in coupled model simulations is investigated, to elucidate factors leading to this misrepresentation. The Global Ocean Mixed Layer configuration of the Met Office Unified Model is particularly useful for exploring this misrepresentation, as it enables separating the effects of coupled model ocean biases in different ocean basins while maintaining air-sea coupling. Atlantic Ocean SST biases cause the incorrect seasonal regime over southern West Africa.Upper level descent in August reduces ascent along the coastline, which is associated with the observed reduction in rainfall during the Little Dry Season. When coupled model Atlantic Ocean biases are introduced, ascent over the coastline is deeper and rainfall totals are higher during July-August. Hence, this study indicates detrimental impacts introduced by Atlantic Ocean biases, and highlights an area of model development required for production of meaningful climate change projections over the West Africa region
Characterizing the variability and meteorological drivers of wind power and solar power generation over Africa
Sub-Saharan Africa (SSA) has the lowest energy access rates in the world,
which poses a key barrier to power system development. Deployment of
renewables, including wind and solar power, will play a key role in expanding
electricity supply across SSA: distributed generation (enabling access for
remote communities), cost-effectiveness and low emissions are key advantages.
However, renewable generation is weather dependent; therefore, including
more renewables increases the amount of meteorologically driven variability
in the power system. Two countries in SSA are chosen for detailed investigation of this meteorologically driven variability: Senegal in West Africa and
Kenya in East Africa. These are chosen due to being areas of dense population,
where there is operational wind and solar power, and plans for regional expansion. In Senegal, solar generation is fairly consistent throughout the year,
while wind generation exhibits strong seasonality, with a peak in the boreal
spring. Low wind and solar power generation days during the boreal summer
are found to be related to the passage of African Easterly Waves. Over Kenya,
both wind and solar generation exhibit seasonal variability, with wind generation peaking during boreal autumn, and solar generation at a minimum during
boreal summer. Inter-annual variability in generation is greater over Kenya
than over Senegal; the El Nino Southern Oscillation is found to impact wind
and solar generation over Kenya. El Nino phases are associated with lower
wind and solar generation in October–December over Kenya, but higher generation in July–September. This improved understanding of variability will
assist system planners in designing reliable future energy system
Recommended from our members
‘Eastern African paradox’ rainfall decline due to shorter not less intense long rains
An observed decline in the Eastern African Long Rains from the 1980s to late 2000s appears contrary to the projected increase under future climate change. This “Eastern African climate paradox” confounds use of climate projections for adaptation planning across Eastern Africa. Here we show the decline corresponds to a later onset and earlier cessation of the long rains, with a similar seasonal maximum in area-averaged daily rainfall. Previous studies have explored the role of remote teleconnections, but those mechanisms do not sufficiently explain the decline or the newly identified change in seasonality. Using a large ensemble of observations, reanalyses and atmospheric simulations, we propose a regional mechanism that explains both the observed decline and the recent partial recovery. A decrease in surface pressure over Arabia and warmer north Arabian Sea is associated with enhanced southerlies and an earlier cessation of the long rains. This is supported by a similar signal in surface pressure in many atmosphere-only models giving lower May rainfall and an earlier cessation. Anomalously warm seas south of Eastern Africa delay the northward movement of the tropical rain-band, giving a later onset. These results are key in understanding the paradox. It is now a priority to establish the balance of mechanisms that have led to these trends, which are partially captured in atmosphere-only simulations
Recommended from our members
Extreme rainfall in East Africa October 2019 – January 2020 and context under future climate change
The 2019 October-December rains over East Africa were one of the wettest seasons on record, with many locations receiving more than double the climatological rainfall, leading to floods and landslides across the region. Above average rainfall continued into January 2020. The persistently high rainfall also contributed to the locust plagues that affected much of East Africa in January 2020. Wet conditions in East Africa are typically associated with El Nino and/or positive Indian Ocean Dipole events. In October-December 2019 a warm anomaly was present in the western Indian Ocean while a cool anomaly was present in the eastern Indian Ocean (a positive Indian Ocean Dipole); conditions known to give above average rainfall over East Africa. The warm anomaly in the western Indian Ocean persisted into January 2020. Seasonal and monthly forecasts correctly predicted above average rainfall during the October-December season. January rainfall is found to be correlated with sea surface temperatures over the western Indian Ocean. Climate model projections suggest that strong positive Indian Ocean Dipole events and wet October-December seasons may become more frequent under future climate change, with associated increased risks of floods
Reduced skin homing by functional Treg in vitiligo
In human vitiligo, cutaneous depigmentation involves cytotoxic activity of autoreactive T cells. It was hypothesized that depigmentation can progress in the absence of regulatory T cells (Treg). The percentage of Treg among skin infiltrating T cells was evaluated by immunoenzymatic double staining for CD3 and FoxP3, revealing drastically reduced numbers of Treg in non-lesional, perilesional and lesional vitiligo skin. Assessment of the circulating Treg pool by FACS analysis of CD4, CD25, CD127 and FoxP3 expression, and mixed lymphocyte reactions in presence and absence of sorted Treg revealed no systemic drop in the abundance or activity of Treg in vitiligo patients. Expression of skin homing receptors CCR4, CCR5, CCR8 and CLA was comparable among circulating vitiligo and control Treg. Treg from either source were equally capable of migrating towards CCR4 ligand and skin homing chemokine CCL22, yet significantly reduced expression of CCL22 in vitiligo skin observed by immunohistochemistry may explain failure of circulating, functional Treg to home to the skin in vitiligo. The paucity of Treg in vitiligo skin is likely crucial for perpetual anti-melanocyte reactivity in progressive disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78696/1/j.1755-148X.2010.00688.x.pd
Recommended from our members
Future changes in seasonality in Eastern Africa from regional simulations with explicit and parametrised convection
The Eastern Africa precipitation seasonal cycle is of significant societal importance, and yet the current generation of coupled global climate models fails to correctly capture this seasonality. The use of convective parametrisation schemes is a known source of precipitation bias in such models. Recently, a high-resolution regional model was used to produce the first pan-African climate change simulation that explicitly models convection. Here, this is compared with a corresponding parametrised-convection simulation, to explore the effect of the parametrisation on representation of Eastern Africa precipitation seasonality. Both models capture current seasonality, although an overestimate in September-October in the parametrised simulation leads to an early bias in the onset of the boreal autumn short rains, associated with higher convective instability and near-surface moist static energy. This bias is removed in the explicit model. Under future climate change both models show the short rains getting later and wetter. For the boreal spring long rains, the explicit convection simulation shows the onset advancing but the parametrised simulation shows little change. Over Uganda and western Kenya both simulations show rainfall increases in the January-February dry season, and large increases in boreal summer and autumn rainfall, particularly in the explicit convection model, changing the shape of the seasonal cycle, with potential for pronounced socio-economic impacts. Interannual variability is similar in both models. Results imply that parameterisation of convection may be a source of uncertainty for projections of changes in seasonal timing from global models, and that potentially impactful changes in seasonality should be highlighted to users
Recommended from our members
Beyond the regional average: drivers of geographical rainfall variability during East Africa's short rains
The East African “short rains” from October–December (OND) are crucial for the region's cultural and agricultural landscape. Traditional climate studies have often treated these rains as a single mode, representing the average rainfall across the region. This approach, however, fails to capture the complex geographical variations in seasonal rainfall. In our study, we analyse 4200 reforecasts from a seasonal prediction system spanning 1981–2022, identifying distinct clusters that represent different geographical patterns of the short rains. We explore the influence of tropical sea-surface temperature patterns, upper-level tropospheric flow, and low-level moisture fluxes on these clusters. A key revelation of our research is the limited predictability of certain geographical rainfall structures based on large-scale climatic drivers. This finding highlights a gap in current forecasting methodologies, emphasising the necessity for further research to understand and predict these intricate patterns. Our study illuminates the complexities of regional rainfall variability in East Africa, underlining the importance of continued investigation to improve climate resilience strategies in the region
Recommended from our members
Phenological tracking of a seasonal climate window in a recovering tropical island bird species
Constraints on evolutionary adaptation and range shifts mean that phenotypic plasticity, which includes physiological, developmental or behavioural responses to environmental conditions, could be an important mode of adaptation to a changing climate for many species with small insular populations. While there is evidence to suggest adaptive plasticity to climate in some island populations, little is known about this capacity in species that have experienced a severe population bottleneck. In a changing climate, plasticity in the timing of life-history events, such as in breeding phenology, is adaptive if timing is optimised in seasonal environments, although these processes are poorly understood for tropical species. Here, we quantify the effects of climate on the breeding phenology and success of the Mauritius kestrel (Falco punctatus), a tropical raptor whose extinction has been averted by conservation management. We show that the timing of egg-laying is advancing in response to warming, at rates similar to temperate bird populations. Individual females show plasticity to temperature, although there is limited variation among individual responses. We show that advances in breeding phenology are likely to be adaptive, as they track changes in a seasonal climate window of favourable conditions, defined by late winter-early spring temperatures and the onset of the summer rainy season. Our results provide a rare example of a small and bottlenecked insular population that has adjusted to recent climate change through phenotypic plasticity. Furthermore, seasonal climate windows and their dynamics may be widespread mechanisms through which tropical species are impacted by and respond to climate change