109 research outputs found
Precise Particle Tracking Against a Complicated Background: Polynomial Fitting with Gaussian Weight
We present a new particle tracking software algorithm designed to accurately
track the motion of low-contrast particles against a background with large
variations in light levels. The method is based on a polynomial fit of the
intensity around each feature point, weighted by a Gaussian function of the
distance from the centre, and is especially suitable for tracking endogeneous
particles in the cell, imaged with bright field, phase contrast or fluorescence
optical microscopy. Furthermore, the method can simultaneously track particles
of all different sizes, and allows significant freedom in their shape. The
algorithm is evaluated using the quantitative measures of accuracy and
precision of previous authors, using simulated images at variable
signal-to-noise ratios. To these we add a new test of the error due to a
non-uniform background. Finally the tracking of particles in real cell images
is demonstrated. The method is made freely available for non-commencial use as
a software package with a graphical user-inferface, which can be run within the
Matlab programming environment
Adsorption of DNA onto positively charged amidine colloidal spheres and the resultant bridging interaction
The complexation behaviour of duplex linear DNA (negatively charged) with amidine functionalised sub-micron latex spheres (positively charged) was studied using dynamic light scattering (DLS) and a PALS interferrometric zeta potential sizer. Four types of DNA-sphere complex were investigated as a function of component concentration by combining amidine functionalised polystyrene microspheres with radii of 10.5 nm and 60 nm, and herring DNA of lengths of 35 nm and 85 nm. At low DNA concentrations (cDNA), the undercharged complexes showed a small increase in measured hydrodynamic radius (Rh) and a decrease in zeta potential with increasing cDNA. Within a critical DNA concentration range Rh was seen to peak sharply, and the zeta potentials were 0 mV, corresponding to the formation of unstable neutral complexes. Immediately above this concentration region the measured Rh values became comparable with those at low cDNA, and the zeta potential became negative, indicating the formation of stable overcharged complexes. The small and large spheres formed multi-sphere and single sphere overcharged aggregates respectively, which is thought to be determined by the relative magnitude of the chain persistence length (50 nm) and the sphere radius, switching on or off the DNA bridging interaction
Network organisation and the dynamics of tubules in the endoplasmic reticulum
From Springer Nature via Jisc Publications RouterHistory: received 2021-04-26, accepted 2021-06-27, registration 2021-07-19, pub-electronic 2021-08-10, online 2021-08-10, collection 2021-12Publication status: PublishedFunder: Biotechnology and Biological Sciences Research Council; doi: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/H017828/1Funder: Wellcome Trust; doi: http://dx.doi.org/10.13039/100010269; Grant(s): 215189/Z/19/ZFunder: Engineering and Physical Sciences Research Council; doi: http://dx.doi.org/10.13039/501100000266Abstract: The endoplasmic reticulum (ER) is a eukaryotic subcellular organelle composed of tubules and sheet-like areas of membrane connected at junctions. The tubule network is highly dynamic and undergoes rapid and continual rearrangement. There are currently few tools to evaluate network organisation and dynamics. We quantified ER network organisation in Vero and MRC5 cells, and developed an analysis workflow for dynamics of established tubules in live cells. The persistence length, tubule length, junction coordination number and angles of the network were quantified. Hallmarks of imbalances in ER tension, indications of interactions with microtubules and other subcellular organelles, and active dynamics were observed. Clear differences in dynamic behaviour were observed for established tubules at different positions within the cell using itemset mining. We found that tubules with activity-driven fluctuations were more likely to be located away from the cell periphery and a population of peripheral tubules with no signs of active motion was found
Microrheology with optical tweezers: data analysis
We present a data analysis procedure that provides the solution to a long-standing issue in microrheology studies, i.e. the evaluation of the fluids' linear viscoelastic properties from the analysis of a finite set of experimental data, describing (for instance) the time-dependent mean-square displacement of suspended probe particles experiencing Brownian fluctuations. We report, for the first time in the literature, the linear viscoelastic response of an optically trapped bead suspended in a Newtonian fluid, over the entire range of experimentally accessible frequencies. The general validity of the proposed method makes it transferable to the majority of microrheology and rheology techniques
The Physics of the Colloidal Glass Transition
As one increases the concentration of a colloidal suspension, the system
exhibits a dramatic increase in viscosity. Structurally, the system resembles a
liquid, yet motions within the suspension are slow enough that it can be
considered essentially frozen. This kinetic arrest is the colloidal glass
transition. For several decades, colloids have served as a valuable model
system for understanding the glass transition in molecular systems. The spatial
and temporal scales involved allow these systems to be studied by a wide
variety of experimental techniques. The focus of this review is the current
state of understanding of the colloidal glass transition. A brief introduction
is given to important experimental techniques used to study the glass
transition in colloids. We describe features of colloidal systems near and in
glassy states, including tremendous increases in viscosity and relaxation
times, dynamical heterogeneity, and ageing, among others. We also compare and
contrast the glass transition in colloids to that in molecular liquids. Other
glassy systems are briefly discussed, as well as recently developed synthesis
techniques that will keep these systems rich with interesting physics for years
to come.Comment: 56 pages, 18 figures, Revie
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
Roles of Dynein and Dynactin in Early Endosome Dynamics Revealed Using Automated Tracking and Global Analysis
Microtubule-dependent movement is crucial for the spatial organization of endosomes in most eukaryotes, but as yet there has been no systematic analysis of how a particular microtubule motor contributes to early endosome dynamics. Here we tracked early endosomes labeled with GFP-Rab5 on the nanometer scale, and combined this with global, first passage probability (FPP) analysis to provide an unbiased description of how the minus-end microtubule motor, cytoplasmic dynein, supports endosome motility. Dynein contributes to short-range endosome movement, but in particular drives 85–98% of long, inward translocations. For these, it requires an intact dynactin complex to allow membrane-bound p150Glued to activate dynein, since p50 over-expression, which disrupts the dynactin complex, inhibits inward movement even though dynein and p150Glued remain membrane-bound. Long dynein-dependent movements occur via bursts at up to ∼8 µms−1 that are linked by changes in rate or pauses. These peak speeds during rapid inward endosome movement are still seen when cellular dynein levels are 50-fold reduced by RNAi knock-down of dynein heavy chain, while the number of movements is reduced 5-fold. Altogether, these findings identify how dynein helps define the dynamics of early endosomes
A Piezoelectric Immunosensor Using Hybrid Self-Assembled Monolayers for Detection of Schistosoma japonicum
BACKGROUND: The parasite Schistosoma japonicum causes schistosomiasis disease, which threatens human life and hampers economic and social development in some Asian countries. An important lesson learned from efforts to reduce the occurrence of schistosomiasis is that the diagnostic approach must be altered as further progress is made towards the control and ultimate elimination of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Using mixed self-assembled monolayer membrane (mixed SAM) technology, a mixture of mercaptopropionic acid (MPA) and mercaptoethanol (ME) was self-assembled on the surface of quartz crystals by gold-sulphur-bonds. Soluble egg antigens (SEA) of S. japonicum were then cross-linked to the quartz crystal using a special coupling agent. As compared with the traditional single self-assembled monolayer immobilization method, S. japonicum antigen (SjAg) immobilization using mixed self-assembled monolayers exhibits much greater immunoreactivity. Under optimal experimental conditions, the detection range is 1:1500 to 1:60 (infected rabbit serum dilution ratios). We measured several infected rabbit serum samples with varying S. japonicum antibody (SjAb) concentrations using both immunosensor and ELISA techniques and then produced a correlation analysis. The correlation coefficients reached 0.973. CONCLUSIONS/SIGNIFICANCE: We have developed a new, simple, sensitive, and reusable piezoelectric immunosensor that directly detects SjAb in the serum. This method may represent an alternative to the current diagnostic methods for S. japonicum infection in the clinical laboratory or for analysis outside the laboratory
Adsorption of DNA onto positively charged amidine colloidal spheres and the resultant bridging interaction
The complexation behaviour of duplex linear DNA (negatively charged) with amidine functionalised sub-micron latex spheres (positively charged) was studied using dynamic light scattering (DLS) and a PALS interferrometric zeta potential sizer. Four types of DNA-sphere complex were investigated as a function of component concentration by combining amidine functionalised polystyrene microspheres with radii of 10.5 nm and 60 nm, and herring DNA of lengths of 35 nm and 85 nm. At low DNA concentrations (cDNA), the undercharged complexes showed a small increase in measured hydrodynamic radius (Rh) and a decrease in zeta potential with increasing cDNA. Within a critical DNA concentration range Rh was seen to peak sharply, and the zeta potentials were 0 mV, corresponding to the formation of unstable neutral complexes. Immediately above this concentration region the measured Rh values became comparable with those at low cDNA, and the zeta potential became negative, indicating the formation of stable overcharged complexes. The small and large spheres formed multi-sphere and single sphere overcharged aggregates respectively, which is thought to be determined by the relative magnitude of the chain persistence length (50 nm) and the sphere radius, switching on or off the DNA bridging interaction
- …