7 research outputs found

    Exploring undergraduate students’ usage pattern of mobile apps for education

    Get PDF
    In recent years, with the general adoption of smartphones with computing power comparable to desktop computers, mobile applications (apps) have experienced a surge in popularity. However, there are few studies conducted about their educational use, especially in Southeast Asia. To close this research gap, this study aims to provide a current overview of mobile apps usage in higher education. Besides exploring the actual use of apps, the technology acceptance model was applied to examine (1) undergraduate students’ perceptions, which involve perceived usefulness and perceived ease of use, towards adopting mobile apps for educational purposes, and (2) their overall attitude toward such adoption. Both quantitative and qualitative methods were used to collect data from 150 undergraduate students in Business, Education, and Engineering in Hong Kong. The results show undergraduate students use mobile apps frequently to engage in learning activities related to their academic studies, with a particularly focus on communication and collaborative working, accessing academic resources, and checking a dictionary. However, the discrepancies in using apps for academic purposes are not significant between the three faculties. Meanwhile, perceived usefulness has a more positive impact on overall attitude compared with the impact of perceived ease of use. The investigation will help tertiary institutions, library service providers, and educators develop and assess strategic planning for education collaborating with mobile apps. This paper could also give app developers some suggestions for app design based on actual usage and students’ information needs.preprin

    Nonvirally Modified Autologous Primary Hepatocytes Correct Diabetes and Prevent Target Organ Injury in a Large Preclinical Model

    Get PDF
    BACKGROUND: Current gene- and cell-based therapies have significant limitations which impede widespread clinical application. Taking diabetes mellitus as a paradigm, we have sought to overcome these limitations by ex vivo electrotransfer of a nonviral insulin expression vector into primary hepatocytes followed by immediate autologous reimplantation in a preclinical model of diabetes. METHODS AND RESULTS: In a single 3-hour procedure, hepatocytes were isolated from a surgically resected liver wedge, electroporated with an insulin expression plasmid ex vivo and reimplanted intraparenchymally under ultrasonic guidance into the liver in each of 10 streptozotocin-induced diabetic Yorkshire pigs. The vector was comprised of a bifunctional, glucose-responsive promoter linked to human insulin cDNA. Ambient glucose concentrations appropriately altered human insulin mRNA expression and C-peptide secretion within minutes in vitro and in vivo. Treated swine showed correction of hyperglycemia, glucose intolerance, dyslipidemia and other metabolic abnormalities for > or = 47 weeks. Metabolic correction correlated significantly with the number of hepatocytes implanted. Importantly, we observed no hypoglycemia even under fasting conditions. Direct intrahepatic implantation of hepatocytes did not alter biochemical indices of liver function or induce abnormal hepatic lobular architecture. About 70% of implanted hepatocytes functionally engrafted, appeared histologically normal, retained vector DNA and expressed human insulin for > or = 47 weeks. Based on structural tissue analyses and transcriptome data, we showed that early correction of diabetes attenuated and even prevented pathological changes in the eye, kidney, liver and aorta. CONCLUSIONS: We demonstrate that autologous hepatocytes can be efficiently, simply and safely modified by electroporation of a nonviral vector to express, process and secrete insulin durably. This strategy, which achieved significant and sustained therapeutic efficacy in a large preclinical model without adverse effects, warrants consideration for clinical development especially as it could have broader future applications for the treatment of other acquired and inherited diseases for which systemic reconstitution of a specific protein deficiency is critical

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Canadian Spine Society1.01: Do lumbar decompression and fusion patients recall their preoperative status? Recall bias in patient-reported outcomes1.02: Trends and costs of lumbar fusion and disc replacement surgeries in Ontario: a population-based study1.03: Ontario's Inter-professional Spine Assessment and Education Clinics (ISAEC): patient, provider and system impact of an integrated model of care for the management of LBP1.04: Validation of the self-administered online assessment of …

    No full text
    corecore