33 research outputs found

    Distinct regions of ATF/CREB proteins Atf1 and Pcr1 control recombination hotspot ade6–M26 and the osmotic stress response

    Get PDF
    The Atf1 protein of Schizosaccharomyces pombe contains a bZIP (DNA-binding/protein dimerization) domain characteristic of ATF/CREB proteins, but no other functional domains or clear homologs have been reported. Atf1-containing, bZIP protein dimers bind to CRE-like DNA sites, regulate numerous stress responses, and activate meiotic recombination at hotspots like ade6–M26. We defined systematically the organization of Atf1 and its heterodimer partner Pcr1, which is required for a subset of Atf1-dependent functions. Surprisingly, only the bZIP domain of Pcr1 is required for hotspot activity and tethering of Atf1 to ade6 promotes recombination in the absence of its bZIP domain and the Pcr1 protein. Therefore the recombination–activation domain of Atf1-Pcr1 heterodimer resides exclusively in Atf1, and Pcr1 confers DNA-binding site specificity in vivo. Atf1 has a modular organization in which distinct regions affect differentially the osmotic stress response (OSA) and meiotic recombination (HRA, HRR). The HRA and HRR regions are necessary and sufficient to activate and repress recombination, respectively. Moreover, Atf1 defines a family of conserved proteins with discrete sequence motifs in the functional domains (OSA, HRA, HRR, bZIP). These findings reveal the functional organization of Atf1 and Pcr1, and illustrate several mechanisms by which bZIP proteins can regulate multiple, seemingly disparate activities

    Mapping of ssDNA Nicks within dsDNA Genomes by Two-dimensional Gel Electrophoresis

    Get PDF
    DNA molecules within chromosomes undergo constant, dynamic changes yet maintain the integrity of the primary DNA sequence. DNA replication, adjustment of helical density, resolution of catenenes, repair of DNA damage, and homologous recombination each involve breakage and religation of the phosphate backbone of the double helix. Although the analysis of dsDNA breaks is facile, the analysis of ssDNA nicks is not. The principal impediment is that conventional, one-dimensional electrophoresis methods cannot readily detect ssDNA nicks in the context of dsDNA breaks. We therefore developed a two dimensional (native/denaturing) gel electrophoresis approach to map the positions of ssDNA nicks. Analysis of cohesive ends of lambda phage DNA, UV-nicked DNA molecules, and DNA treated with ssDNA nicking endonuclease N-BbvcIB revealed that the method can detect and map with precision the positions of ssDNA nicks. Titration experiments revealed the ability to detect and quantitate nicked DNA molecules present at a frequency of 1% of total DNA molecules. This method can be used both to scan rapidly through large regions of the genome of interest and to map with high-resolution the location of ssDNA nicks in populations of dsDNA molecules. It is of utility for the analysis of ssDNA nicks involved in a variety of chromosomal processes

    Rec12 (Spo11) Recominase of Fission Yeast Promotes a Backup, Distributive Pathway for Chromosome Segregation in Meiosis I

    Get PDF
    We studied the relationship between recombination and segregation in the fission yeast Schizosaccharomyces pombe. In meiosis, chromosomes undergo two rounds of segregation to produce haploid meiotic products. Crossover meiotic ecombination (chiasmata) promotes chromosome segregation during meiosis I; achiasmatic chromosomes often suffer on disjunction in meiosis I. Recl2 protein is a topoisomerase IIortholog that introduces double-strand DNA breaks that nitiate recombination. The red2 null (deletion) and active site (Y98F) mutants lack recombination and crossovers, and onsequently suffer meiosis I nondisjunction. However, null mutants chromosomes segregate to opposite poles more frequently than predicted. Thus, fission yeast has a backup, distributive segregation pathway that can function in the absence of Rec 12 and Rec12-dependent chiasmata. Interestingly, presence of catalytically-inactive Rec 12 protein (Y98F) enhances the fidelity of distributive segregation. We hypothesize that Rec 12 protein activates a checkpoint that promotes use of the distributive segregation pathway

    Distinct functions of S. pombe Rec12 (Spo11) protein and Rec12-dependent crossover recombination (chiasmata) in meiosis I; and a requirement for Rec12 in meiosis II

    Get PDF
    BACKGROUND: In most organisms proper reductional chromosome segregation during meiosis I is strongly correlated with the presence of crossover recombination structures (chiasmata); recombination deficient mutants lack crossovers and suffer meiosis I nondisjunction. We report that these functions are separable in the fission yeast Schizosaccharomyces pombe. RESULTS: Intron mapping and expression studies confirmed that Rec12 is a member of the Spo11/Top6A topoisomerase family required for the formation of meiotic dsDNA breaks and recombination. rec12-117, rec12-D15 (null), and rec12-Y98F (active site) mutants lacked most crossover recombination and chromosomes segregated abnormally to generate aneuploid meiotic products. Since S. pombe contains only three chromosome pairs, many of those aneuploid products were viable. The types of aberrant chromosome segregation were inferred from the inheritance patterns of centromere linked markers in diploid meiotic products. The rec12-117 and rec12-D15 mutants manifest segregation errors during both meiosis I and meiosis II. Remarkably, the rec12-Y98F (active site) mutant exhibited essentially normal meiosis I segregation patterns, but still exhibited meiosis II segregation errors. CONCLUSIONS: Rec12 is a 345 amino acid protein required for most crossover recombination and for chiasmatic segregation of chromosomes during meiosis I. Rec12 also participates in a backup distributive (achiasmatic) system of chromosome segregation during meiosis I. In addition, catalytically-active Rec12 mediates some signal that is required for faithful equational segregation of chromosomes during meiosis II

    DNA Sequence-Mediated, Evolutionarily Rapid Redistribution of Meiotic Recombination Hotspots: Commentary on Genetics 182: 459–469 and Genetics 187: 385–396

    Get PDF
    Hotspots regulate the position and frequency of Spo11 (Rec12)-initiated meiotic recombination, but paradoxically they are suicidal and are somehow resurrected elsewhere in the genome. After the DNA sequence-dependent activation of hotspots was discovered in fission yeast, nearly two decades elapsed before the key realizations that (A) DNA site-dependent regulation is broadly conserved and (B) individual eukaryotes have multiple different DNA sequence motifs that activate hotspots. From our perspective, such findings provide a conceptually straightforward solution to the hotspot paradox and can explain other, seemingly complex features of meiotic recombination. We describe how a small number of single-base-pair substitutions can generate hotspots de novo and dramatically alter their distribution in the genome. This model also shows how equilibrium rate kinetics could maintain the presence of hotspots over evolutionary timescales, without strong selective pressures invoked previously, and explains why hotspots localize preferentially to intergenic regions and introns. The model is robust enough to account for all hotspots of humans and chimpanzees repositioned since their divergence from the latest common ancestor

    Phosphorylation-Independent Regulation of Atf1-Promoted Meiotic Recombination by Stress-Activated, p38 Kinase Spc1 of Fission Yeast

    Get PDF
    BACKGROUND:Stress-activated protein kinases regulate multiple cellular responses to a wide variety of intracellular and extracellular conditions. The conserved, multifunctional, ATF/CREB protein Atf1 (Mts1, Gad7) of fission yeast binds to CRE-like (M26) DNA sites. Atf1 is phosphorylated by the conserved, p38-family kinase Spc1 (Sty1, Phh1) and is required for many Spc1-dependent stress responses, efficient sexual differentiation, and activation of Rec12 (Spo11)-dependent meiotic recombination hotspots like ade6-M26. METHODOLOGY/PRINCIPAL FINDINGS:We sought to define mechanisms by which Spc1 regulates Atf1 function at the ade6-M26 hotspot. The Spc1 kinase was essential for hotspot activity, but dispensable for basal recombination. Unexpectedly, a protein lacking all eleven MAPK phospho-acceptor sites and detectable phosphorylation (Atf1-11M) was fully proficient for hotspot recombination. Furthermore, tethering of Atf1 to ade6 in the chromosome by a heterologous DNA binding domain bypassed the requirement for Spc1 in promoting recombination. CONCLUSIONS/SIGNIFICANCE:The Spc1 protein kinase regulates the pathway of Atf1-promoted recombination at or before the point where Atf1 binds to chromosomes, and this pathway regulation is independent of the phosphorylation status of Atf1. Since basal recombination is Spc1-independent, the principal function of the Spc1 kinase in meiotic recombination is to correctly position Atf1-promoted recombination at hotspots along chromosomes. We also propose new hypotheses on regulatory mechanisms for shared (e.g., DNA binding) and distinct (e.g., osmoregulatory vs. recombinogenic) activities of multifunctional, stress-activated protein Atf1

    Meiotic Recombination Hotspots of Fission Yeast Are Directed to Loci that Express Non-Coding RNA

    Get PDF
    Polyadenylated, mRNA-like transcripts with no coding potential are abundant in eukaryotes, but the functions of these long non-coding RNAs (ncRNAs) are enigmatic. In meiosis, Rec12 (Spo11) catalyzes the formation of dsDNA breaks (DSBs) that initiate homologous recombination. Most meiotic recombination is positioned at hotspots, but knowledge of the mechanisms is nebulous. In the fission yeast genome DSBs are located within 194 prominent peaks separated on average by 65-kbp intervals of DNA that are largely free of DSBs.). Furthermore, we tested and rejected the hypothesis that the ncRNA loci and DSB peaks localize preferentially, but independently, to a third entity on the chromosomes.Meiotic DSB hotspots are directed to loci that express polyadenylated ncRNAs. This reveals an unexpected, possibly unitary mechanism for what directs meiotic recombination to hotspots. It also reveals a likely biological function for enigmatic ncRNAs. We propose specific mechanisms by which ncRNA molecules, or some aspect of RNA metabolism associated with ncRNA loci, help to position recombination protein complexes at DSB hotspots within chromosomes

    NIH dollars go to too few US states

    No full text

    Opinion: The National Institutes of Health needs to better balance funding distributions among US institutions

    No full text

    Distinct regions of ATF/CREB proteins Atf1 and Pcr1

    No full text
    control recombination hotspot ade6–M26 and the osmotic stress respons
    corecore