376 research outputs found

    Human neuropeptide Y signal peptide gain-of-function polymorphism is associated with increased body mass index: possible mode of function

    Get PDF
    Neuropeptide Y (NPY) has been implicated in the control of food intake and energy balance based on many observations in animals. We have studied single nucleotide polymorphisms (SNPs) within the regulatory and coding sequences of the human NPY gene. One variant (1128 T>C), which causes an amino acid change from leucine to proline at codon 7 in the signal peptide of NPY, was associated with increased body mass index (BMI) in two separate Swedish populations of normal and overweight individuals. In vitro transcription and translation studies indicated the unlikelihood that this signal peptide variation affects the site of cleavage and targeting or uptake of NPY into the endoplasmic reticulum (ER). However, the mutant, and to a lesser extent the wild-type, signal peptide by themselves markedly potentiated NPY-induced food intake, as well as hypothalamic NPY receptor signaling. Our findings in humans strongly indicate that the NPY signaling system is implicated in body weight regulation and suggest a new and unexpected functional role of a signal peptide

    A Novel RNA Transcript with Antiapoptotic Function Is Silenced in Fragile X Syndrome

    Get PDF
    Several genome-wide transcriptomics efforts have shown that a large percentage of the mammalian genome is transcribed into RNAs, however, only a small percentage (1–2%) of these RNAs is translated into proteins. Currently there is an intense interest in characterizing the function of the different classes of noncoding RNAs and their relevance to human disease. Using genomic approaches we discovered FMR4, a primate-specific noncoding RNA transcript (2.4 kb) that resides upstream and likely shares a bidirectional promoter with FMR1. FMR4 is a product of RNA polymerase II and has a similar half-life to FMR1. The CGG expansion in the 5′ UTR of FMR1 appears to affect transcription in both directions as we found FMR4, similar to FMR1, to be silenced in fragile X patients and up-regulated in premutation carriers. Knockdown of FMR4 by several siRNAs did not affect FMR1 expression, nor vice versa, suggesting that FMR4 is not a direct regulatory transcript for FMR1. However, FMR4 markedly affected human cell proliferation in vitro; siRNAs knockdown of FMR4 resulted in alterations in the cell cycle and increased apoptosis, while the overexpression of FMR4 caused an increase in cell proliferation. Collectively, our results demonstrate an antiapoptotic function of FMR4 and provide evidence that a well-studied genomic locus can show unexpected functional complexity. It cannot be excluded that altered FMR4 expression might contribute to aspects of the clinical presentation of fragile X syndrome and/or related disorders

    Pseudo–Messenger RNA: Phantoms of the Transcriptome

    Get PDF
    The mammalian transcriptome harbours shadowy entities that resist classification and analysis. In analogy with pseudogenes, we define pseudo–messenger RNA to be RNA molecules that resemble protein-coding mRNA, but cannot encode full-length proteins owing to disruptions of the reading frame. Using a rigorous computational pipeline, which rules out sequencing errors, we identify 10,679 pseudo–messenger RNAs (approximately half of which are transposon-associated) among the 102,801 FANTOM3 mouse cDNAs: just over 10% of the FANTOM3 transcriptome. These comprise not only transcribed pseudogenes, but also disrupted splice variants of otherwise protein-coding genes. Some may encode truncated proteins, only a minority of which appear subject to nonsense-mediated decay. The presence of an excess of transcripts whose only disruptions are opal stop codons suggests that there are more selenoproteins than currently estimated. We also describe compensatory frameshifts, where a segment of the gene has changed frame but remains translatable. In summary, we survey a large class of non-standard but potentially functional transcripts that are likely to encode genetic information and effect biological processes in novel ways. Many of these transcripts do not correspond cleanly to any identifiable object in the genome, implying fundamental limits to the goal of annotating all functional elements at the genome sequence level

    Modulation of gene-specific epigenetic states and transcription by non-coding RNAs

    Get PDF
    Emerging evidence points to a role for long non-coding RNAs in the modulation of epigenetic states and transcription in human cells. New insights, using various forms of small non-coding RNAs, suggest that a mechanism of action is operative in human cells, which utilizes non-coding RNAs to direct epigenetic marks to homology containing loci resulting ultimately in the epigenetic-based modulation of gene transcription. Importantly, insights into this mechanism of action have allowed for certain target sequences, which are either actively involved in RNA mediated epigenetic regulation or targets for non-coding RNA based epigenetic regulation, to be selected. As such, it is now feasible to utilize small antisense RNAs to either epigenetically silence a gene expression or remove epigenetic silencing of endogenous non-coding RNAs and essentially turn on a gene expression. Knowledge of this emerging RNA-based epigenetic regulatory network and our ability to cognitively control gene expression has deep implications in the development of an entirely new area of pharmacopeia

    Central neuropeptide Y receptors are involved in 3(rd )ventricular ghrelin induced alteration of colonic transit time in conscious fed rats

    Get PDF
    BACKGROUND: Feeding related peptides have been shown to be additionally involved in the central autonomic control of gastrointestinal functions. Recent studies have shown that ghrelin, a stomach-derived orexigenic peptide, is involved in the autonomic regulation of GI function besides feeding behavior. Pharmacological evidence indicates that ghrelin effects on food intake are mediated by neuropeptide Y in the central nervous system. METHODS: In the present study we examine the role of ghrelin in the central autonomic control of GI motility using intracerobroventricular and IP microinjections in a freely moving conscious rat model. Further the hypothesis that a functional relationship between NPY and ghrelin within the CNS exists was addressed. RESULTS: ICV injections of ghrelin (0.03 nmol, 0.3 nmol and 3.0 nmol/5 μl and saline controls) decreased the colonic transit time up to 43%. IP injections of ghrelin (0.3 nmol – 3.0 nmol kg(-1 )BW and saline controls) decreased colonic transit time dose related. Central administration of the NPY(1 )receptor antagonist, BIBP-3226, prior to centrally or peripherally administration of ghrelin antagonized the ghrelin induced stimulation of colonic transit. On the contrary ICV-pretreatment with the NPY(2 )receptor antagonist, BIIE-0246, failed to modulate the ghrelin induced stimulation of colonic motility. CONCLUSION: The results suggest that ghrelin acts in the central nervous system to modulate gastrointestinal motor function utilizing NPY(1 )receptor dependent mechanisms

    Designing stem-cell-based dopamine cell replacement trials for Parkinson's disease

    Get PDF
    Clinical studies of Parkinson’s disease (PD) using a dopamine cell replacment strategy have been tried for more than 30 years. The outcomes following transplantation of human fetal ventral mesencephalic tissue (hfVM) have been variable, with some patients coming off their anti-PD treatment for many years and others not responding and/or developing significant side effects, including graft-induced dyskinesia. This led to a re-appraisal of the best way to do such trials, which resulted in a new European-Union-funded allograft trial with fetal dopamine cells across several centers in Europe. This new trial, TRANSEURO (NCT01898390), is an open-label study in which some individuals in a large observational cohort of patients with mild PD who were undergoing identical assessments were randomly selected to receive transplants of hfVM. The TRANSEURO trial is currently ongoing as researchers have completed both recruitment into a large multicenter observational study of younger onset early-stage PD and transplantation of hfVM in 11 patients. While completion of TRANSEURO is not expected until 2021, we feel that sharing the rationale for the design of TRANSEURO, along with the lessons we have learned along the way, can help inform researchers and facilitate planning of transplants of dopamine-producing cells derived from human pluripotent stem cells for future clinical trials

    Identification of a cancer stem cell-specific function for the histone deacetylases, HDAC1 and HDAC7, in breast and ovarian cancer

    Get PDF
    Tumours are comprised of a highly heterogeneous population of cells, of which only a small subset of stem-like cells possess the ability to regenerate tumours in vivo. These cancer stem cells (CSCs) represent a significant clinical challenge as they are resistant to conventional cancer therapies and play essential roles in metastasis and tumour relapse. Despite this realization and great interest in CSCs, it has been difficult to develop CSC-targeted treatments due to our limited understanding of CSC biology. Here, we present evidence that specific histone deacetylases (HDACs) play essential roles in the CSC phenotype. Utilizing a novel CSC model, we discovered that the HDACs, HDAC1 and HDAC7, are specifically over-expressed in CSCs when compared to non-stem-tumour-cells (nsTCs). Furthermore, we determine that HDAC1 and HDAC7 are necessary to maintain CSCs, and that over-expression of HDAC7 is sufficient to augment the CSC phenotype. We also demonstrate that clinically available HDAC inhibitors (HDACi) targeting HDAC1 and HDAC7 can be used to preferentially target CSCs. These results provide actionable insights that can be rapidly translated into CSC-specific therapies
    corecore