
REVIEW
www.advgenet.com

Transcriptomics for Clinical and Experimental Biology
Research: Hang on a Seq
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Sequencing the human genome empowers translational medicine, facilitating
transcriptome-wide molecular diagnosis, pathway biology, and drug
repositioning. Initially, microarrays are used to study the bulk transcriptome;
but now short-read RNA sequencing (RNA-seq) predominates. Positioned as a
superior technology, that makes the discovery of novel transcripts routine,
most RNA-seq analyses are in fact modeled on the known transcriptome.
Limitations of the RNA-seq methodology have emerged, while the design of,
and the analysis strategies applied to, arrays have matured. An equitable
comparison between these technologies is provided, highlighting advantages
that modern arrays hold over RNA-seq. Array protocols more accurately
quantify constitutively expressed protein coding genes across tissue
replicates, and are more reliable for studying lower expressed genes. Arrays
reveal long noncoding RNAs (lncRNA) are neither sparsely nor lower
expressed than protein coding genes. Heterogeneous coverage of
constitutively expressed genes observed with RNA-seq, undermines the
validity and reproducibility of pathway analyses. The factors driving these
observations, many of which are relevant to long-read or single-cell
sequencing are discussed. As proposed herein, a reappreciation of bulk
transcriptomic methods is required, including wider use of the modern
high-density array data—to urgently revise existing anatomical RNA reference
atlases and assist with more accurate study of lncRNAs.
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1. Introduction

High-throughput profiling technolo-
gies are increasingly used to define
the molecular repertoire of disease at
the (epi)genomic, transcriptomic, pro-
teomic, and metabolomic level.[1–14]

Such technologies can be used to estab-
lish that patients, normally categorized
to a single disease, display molecular
heterogeneity;[15] this may be linked
to prognosis or be used to select more
active drug combinations.[16–20] Tran-
scriptomics has led to various tools for
stratified medicine[14,21–24] by identifying
signatures that better match patients
to drugs.[2,25–30] Typical statistical anal-
yses applied to clinical transcriptomics
data includes differential gene ex-
pression (DE) based on group mean
differences;[8,31,32] regression analyses
of transcript abundance versus clini-
cal status;[2,6,30,33–36] and classification
approaches.[9,37–44] Regression and DE
analyses are then used to identify the
molecular pathways regulated between
groups.
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Capturing RNA expression is not done merely as a surro-
gate for measuring protein abundance;[45] although this can be
done when applied appropriately.[46–48] Rather, RNA expression
acts as a “biosensor”, integrating environmental,[8,31,36,49] epige-
netic, and genetic[50–52] influences. Modeling transcriptomic data
provides information about the activity of proteins in a path-
way, for instance, transcription factor status.[53,54] While protein
abundance may not inform on protein activity,[55,56] transcrip-
tome analysis can identify protein activity across networks and
canonical pathways[35,36,54] and thus extends beyond a simple
surrogate for protein abundance. Each multi-omic technology
captures distinct and shared information, while each also intro-
duces its own specific sources of variance. The recent trend to
report that global transcriptomics fails to capture biology iden-
tified only by proteomics[57] can be explained by poorer quality
transcriptomics,[35] including use of relative count RNA-seq data,
a lack of consideration of temporal relationships between tran-
scription, translation, and proteostasis or the reliability of path-
way or network models used to report differences.[58] In gen-
eral, studying any mismatch between RNA and protein requires
a more equitable and balanced view on the limitations of all
the laboratory methods employed.[59] Thus, while the trend to-
wards integrating multi-omic data continues,[60–63] in a transla-
tional medicine setting, a single robust technology may deliver
sufficient information and use fewer resources when applied to
disease diagnosis or prognosis.[64] For these reasons, transcrip-
tome profiling will remain at the forefront of precision and strat-
ified medicine efforts.[14,24,65–68]

Herein, we reflect on the methods used for transcriptomics
applied to translational medicine studies, including the reliabil-
ity to cover the expressed transcriptome and the validity of path-
way analysis. Processive technologies must ensure good repro-
ducibility with comprehensive and accurate quantification of the
transcriptome to ensure down-stream analysis is reliable. Large-
scale tissue/blood sample acquisition from clinical trials or from
biobank initiatives are costly, especially if accompanied by deep
clinical phenotyping. We focus on the merits of the two main
bulk transcriptome technologies (RNA-seq and modern arrays)
and consider these in light of whether there is limited clinical
materials and study costs. In doing so, we seek to rebalance what
we consider to be the overly “enthusiastic” introduction of short-
read RNA-seq,[69] and the persistent overly pessimistic view of
arrays.[70] We do not consider 3rd generation (long read) RNA se-
quencing methods in detail[71,72] as they are costly with limited
throughput, representing basic research tools with very fluid and
evolving laboratory and informatics protocols. We do not discuss
single-cell sequencing technologies[73–76] for similar reasons. No-
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tably, themyriad of distinct single-cell methods provide fractional
(and often 3’ directed) coverage of the transcriptome, dominated
by higher abundance genes,[77] and thus provides a biased view
of the single-cell transcriptome.[78] Such limitations affect the va-
lidity of any pathway analyses[79–82] representing an issue shared
with 2nd generation short-read RNA-seq assays.[83] The reader is
directed elsewhere to in-depth discussions of the biases inherent
to single-cell methods.[84]

2. Historical Overview of Gene Expression
Profiling Methods from Bulk RNA Samples

Technological advances in the latter half of the 20th centurymade
characterization of the tissue transcriptome possible, most no-
tably the ability to “sequence” DNA to define the human genome.
Nucleic acid sequencing began in the 1960s with decrypting
the 76 nucleotides of alanine tRNA, a project that took over
three years.[85] Over a decade later, Sanger introduced “chain-
terminating” sequencing, enabling similar results in days.[86]

First-generation sequencers employed a modified version of the
Sanger method, permitted parallel running of 96 reactions and
≈200 bases per sample, to be sequenced per hour.[87–89] This ap-
proach is highly accurate and can remain a method of choice for
diagnosing rare diseases. Today, Affymetrix array and short-read
RNA-seq are the two most widely used approaches for gene ex-
pression profiling of clinical samples (Table 1). These methods
both relied on the genome sequencing revolution—and profile
RNA extracted from a few milligrams of tissue, ideally using be-
tween ≈500 ng (Affymetrix) to a microgram (RNA-seq) of total
RNA. In comparison, direct long-read RNA sequencing, using
Nanopore technology, still requires up to ten timesmore RNA.[90]

2.1. Introduction to Microarrays

Various array designs emerged in the 1990’s, each with various
designs and technical capabilities[91,92]—with the Affymetrix ar-
ray emerging as the most popular.[92,93] Arrays contain a “lawn”
of oligonucleotide probes immobilized on a solid glass surface
that bind complementary DNA molecules, that is, it is a dedi-
cated, non-competitive quantification strategy (i.e., each nucleic
acid sequence has its own “detection” system). A biotinylated
“sandwich” assay then yields a fluorescent signal in proportion to
the concentration of the copy DNA (cDNA)—a facsimile of RNA
as a strand-specific DNA.[93] Early Affymetrix array designs re-
quired 5 “chips” per clinical sample to cover the complete draft
of the transcriptome.[8] Each probe was designed to measure the
3’ end of transcripts. The drive to unravel the complexity of tran-
scriptome, combined with the availability of the draft genome
sequence, led to the development of the “chromosome tiling”
array[94] which studied transcription from the entire chromo-
some or genome.[95–97] However, these were costly and never in-
tended as a routine tool to quantify transcript abundance.
Modern high-density arrays, relying on ≈7 million probes

to cover the known transcriptome, became available in 2015[98]

and provide equitable profiling of the coding and non-coding
transcriptomes.[2,30,54] Informatic analysis of this technology in-
volves bringing together the signal from multiple copies of 25-
mer probes, distributed across the array surface. The probe level
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Table 1. Comparison of the general properties of modern high-density arrays and short-read RNA-seq.

Platform High-density array (e.g., Clariom D or HTA 2.0) Short-read sequencing (e.g., Illumina NovaSeq 6000)

Laboratory details

Head-line costs for like-for-like analysisa) $300 >$750 >150 M ($300 for 30–50 M is typical option)

Typical “Read depth”a) Estimated = 150 M paired-end reads 20M-60 M paired-end (or >100 M paired for de novo
assembly)

Typical recommended amount of RNA >100 ng (strand specific kit) >500ng

High abundance RNA depletion Not required YES (Ribosomal and/or Globin)

Samples bar-coded to multiplexb) N/A YES (up to 24 per flow cell lane); however, multiplexing
has caveats

RNA to DNA protocol Linear amplification, including amplification-free
options, cRNA

Most commonly, 18-cycle PCR non-linear amplification to
produce cDNA

Lab protocol 24 samples per workstation for high-density array 24 bar-coded samples per flow cell lane

Throughput per workstation Medium-high (lower density arrays can be run
384-well format)

Medium (>60–150 M paired using S4 flow cell at
100–150 bp per read)

Typical run time per workstation (24 samples) ≈24 h >48-72+ h

Data file produced Original image, CEL file No original base-image-file; FASTQ

Method Fragmented labeled cRNA hybridized to 7 million,
multi-copy, 25-mer “probes”

Ligated fragmented cDNA hybridized to flow-cell, in situ
amplification and probabilistic base calling using digital
imaging

Published technical performance

Base call accuracy N/A >80% called near-perfect accuracy (Q30)

Annotation accuracy Each 25-mer probe aligned or rejected to current
genome/transcriptome

Sequence aligned to current genome/transcriptome using
a predictive model

Relies on reference sequence Yes (CDF); updated partial re-alignment using
updated CDF

Mostly; re-alignment possible (> time/costs)

Reproducibility for the most abundant transcripts R2 > 0.9 R2 > 0.9

Signal characteristics of raw data Continuous signal, normally distributed (log),
background low compared with signal

Discrete count data, with many missing values

GC correction of signal YES YES, possibly[110]

Sensitivity and dynamic rangec) Good dynamic range (up to 8000% for max vs min
value for a probe-set across clinical samples)

Highly sensitive as long as the cDNA for a transcript is
represented in the library

Zero counts (missing data across biological
replicates)

None (at the probe-set level) Frequent for >50% of the genome

Coverage of Protein-coding RNA in sample >90% >80%

Coverage of non-coding RNA in sample >75% Highly variable, <25%

Allele specific quantification Not possible Possible, with limited examples so far

Informatics related

Raw data storage (CEL/BAM)d) Up to 80 MB/sample >1GB/sample (compressed)

Complete basic data analysis (from CEL or FASTQ
file to pathway analysis)

≈3–7 days ≈weeks to months depending on how many analytical
options are combined to explore the validity of the
primary analysis

Normalization and quantification Stream-lined, validated with few variations[30,54,99] Thousands of potential combinations; no
gold-standard[115,153,251,252]

Differential expression Established, validated methods[129–131] Methods remain work in progress, with popular methods
appearing problematic larger sample sizes[153]

a)
It is estimated that for RNA sequencing to quantify DE of lower expressed genes to the same degree as modern arrays, 150 million[98] or up to 1 billion reads may be

required[151]
b)
Multiplexing samples in a pooled sequencing library (with bar-codes) assumes that the concentration of each library (cDNA) is relatively even. Clearly, if

one sample or more has less rRNA depletion or is added disproportionately, this changes this condition. Further, if free barcoded adapter/index primers are present in a
multiplexed pool, the free adapter has the potential to prime and extend library molecules in the same lane during the clustering step, which would result in misassignment
of reads through index swapping. This can cause errors in demultiplexing data, as reads from one sample have the potential to end up in the FASTQ files of a different sample
(information taken from https://www.med.stanford.edu/gssc/hiseq4000issue.html)

c)
There is no doubt that sequencing can be very sensitive, yet prior discussions of the

dynamic range have been misleading. If a gene did not make it into most libraries or the depth of sequencing was insufficient to accurately quantify the gene in the baseline
sample estimates of the increased gene expression in the post-intervention samples suffer from being divided by a very small number. RNA sequencing is also subject to
producing “zero” count values in many samples, diluting the mean group value for the denominator, which can dramatically inflate fold change values. The exact threshold
for detection will be unclear and will vary depending on the choice of library and sequencing protocols

d)
Studies to compress raw data to make storing RNA-seq raw data

more affordable have identified significant challenges or artefacts[253] and ultimately do not represent storage of original raw data—in contrast to the files produced during
scanning of an array.
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signal is assembled by combining a minimum of three probes
into “probe-sets”. The exact composition of each probe-set is
defined by reference to a “map” called a chip definition file
(CDF); which is routinely configured to exon or transcript level
resolution.[54] Regardless of when the array was designed, the de-
sign of the CDF can be updated regularly to ensure this process
remains accurate.[99] The physical design of the array can also be
updated as the transcriptome becomes more complete. The raw
data from each array experiment is retained as a binary “CEL file”.
For very large-scale projects, the high throughput lower density
“peg” array may be useful, processing clinical samples in 96- and
384-well format using a GeneTitan workstation (Thermofisher
Inc). This format provides coverage of the known protein-coding
transcriptome, but with limited resolution, while the equivalent
non-coding array remains to be developed.
Modern high density arrays generate a signal ranging from <1

to 16 on the log2 scale.[2,30,100] Through cross-reference with the
literature, the minimal signal for genuinely expressed genes ap-
pears to vary between 2 and 3 log2 units. By this criteria, low ex-
pressed genes essential physiological roles can be detected, for
example, for muscle we observe expression of nicotinic acetyl-
choline receptor RNA from the neuromuscular junction.[101–103]

Identification of physiologically active, but low-expressed genes,
for each tissue type, along with statistical thresholds, is required
to define the lower end of the biological signal. Further, a study-
specific probe-level scan can be used to remove probes with aber-
rant signals, before probes are combined into transcript level
CDF design.[2] This study-specific approach typically removes
≈20%of probes, while realignment—to check probe specificity—
removes a further 15%. Thereafter, greater than 90% of the re-
maining probe-sets produce a signal above the empirical thresh-
old of between 2 and 3 log2 units.

[2,30,54] The signal from each
probe on the high-density arrays can also be scaled by their gua-
nine and cytosine (GC) content (Thermofisher Inc, SST-GCCN
Whitepaper) by processing the CEL file. This process makes the
signal generated more comparable across genes (further distin-
guishing this data type from RNA-seq based relative counts). In
the end, about 5 from 7 million probes are typically used to de-
tect≈500,000 exons or≈100 000 transcript probe-sets in each hu-
man tissue type, using a Human Transcriptome Array (HTA) 2.0
array.[54] Transcript signals can be further summarized in a tar-
geted manner for statistical analysis; for example, the signal orig-
inating only from the untranslated region can be extracted and
compared across conditions, identifying regulatory events un-
seenwith conventional gene level analysis.[35] Finally, it should be
noted that the quantification of very short transcripts (<30 base
pairs (bp)) by an array will not be ideal as such a signal would rely
on less than three distinct probes.

2.2. Introduction to Short-read RNA-Seq

Next-generation sequencing short-read RNA-seq emerged in
2008, reflecting advances in several laboratories.[104,105] An ap-
proach developed by Solexa (acquired by Illumina) generates
most of the sequencing data deposited on the Sequence Read
Archive (SRA) and thus is the focus of this review.[106] Short-read
RNA-seq requires making a DNA copy of RNA before analysis,
after which in situ cluster formation by amplification is tracked.

DNA clusters are generated on a flow cell using a modification of
PCR, called bridge amplification, where DNA polymerase directs
chain elongation from DNA templates using reversible chain-
terminating nucleotides. Each cluster of amplified nucleotides is
then “read” – typically via a four-color system for base calls—to
determine sequence information.[106,107] Short-read RNA-seq has
several laboratory requirements that array protocols do not, such
as initial depletion of the most abundantly expressed genes (e.g.,
ribosomal RNA—rRNA) which if not removed, dominates most
of the sequence reads.
Short-read RNA-seq “counts” are based on counting reads of

50–200 bases, and gene abundance is inferred from the num-
ber of counts that map back to a given gene,[108,109] scaled to the
total number of mapped reads in the sequencing run. Mapping
each signal to an individual gene is mostly done using a refer-
ence transcriptome/genome. Allocation of multi-mapping reads
is achieved using probabilistic-based estimates, which remains
a source of bias and uncertainty.[70] Counts represent the rela-
tive expression of the gene within the cDNA library during a sin-
gle sequencing run.[76] Longer genes yield more reads, but other
factors such as nucleotide content also influence the number of
reads counted,[110] rendering the quantification of transcripts a
nontrivial challenge.[111] The influence of gene length on data
processing can artificially result in significant pathways in down-
stream statistical analysis.[112]

Laboratories specializing in genomics, carry out complex “de
novo” assembly of sequencing data to discover novel transcripts,
often in non-mammalian species without completed reference
genomes.[113] Here, reads are assembled using various complex
models, with or without the use of a genome from a related
species. While any initial alignment can be quick,[114] the com-
plete process is iterative[108] and may take weeks or months fully
evaluate the validity of the modeling choices. Such analyses are
not part of the standard transcriptomics service, while the lack
of precise reporting of the hundreds of potential experimen-
tal options[115] for RNA-seq limits meaningful replication.[116]

Thus, despite the potential capacity for transcript discovery,[69]

most short-read RNA-seq studies are not designed to report novel
transcripts.[30,70]

3. Performance Metrics for Short-Read RNA-seq
versus Modern High-Density Arrays

Several influential articles compared RNA-seq with (older) ar-
ray technology,[69,105] explicitly reflecting on the “death of the
microarray”[117] and these have fueled a persistent inaccurate
view of arrays.[70] To re-examine this topic, it is critical to
contrast the most common short-read RNA-seq method with
the latest modern high-density array and reflect on empiri-
cal performance rather than any hypothetical advantages. Us-
ing a variety of published datasets produced from human clin-
ical samples (in this case snap-frozen human skeletal muscle)
we present easy-to-follow head-to-head comparisons. We have
reported comparable observations using post-mortem human
brain as well as from snap-frozen RNA form blood and adipose
tissue, elsewhere.[2,28,30,54,57,118–120]

For a gene profiling technology to be useful for modeling dis-
ease biology (pathways or networks), it must capture the com-
plexity of the transcriptome with limited bias, and that bias must
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be quantifiable. To have cost-effective clinical utility, it should be
reproducible, generate consistent data comparable to a reference,
and have a quick turnaround cycle involving robust computa-
tional pipelines. Costs of raw data storage should also not be over-
looked. Short-read RNA-seq produces gigabytes of summarized
data per sample, while each modern array raw data file is 70 MB.
While short-read RNA-seq technology benefits from efforts to
make all forms of DNA sequencing more cost-effective[121]

these improvements have not led short-read RNA-seq to be-
come cost effective compared with the modern array, reflecting
longer laboratory and informatics processing times than arrays
(Table 1).
A highly influential 2009 review (with > 13 500 citations) pro-

vides the basis for the often-stated superior performance of RNA-
seq.[69] It highlighted a comparison with the now discontinued
BeadChip array (probes for ≈13 000 genes) and, unsurprisingly,
found that RNA-seq detected ≈25% more genes.[105] Yet had an
old Affymetrix U133+2 array been used; it would have performed
as well as RNA-seq at this time. A detailed comparison[69] was
made with the “chromosome tiling” array,[94] reporting that RNA-
seq had less background noise, improved ability to differentiate
between transcript isoforms, and greater dynamic range as well
as better reproducibility for DE analysis.[69] These comparisons
are not terribly meaningful as the “chromosome tiling” array was
not designed[94] as a quantitative tool, nor does this comparison
accurately reflect the performance of a modern array.
An in-depth comparison of short-read RNA seq and arrays was

made by the Array/Sequencing Quality Control Consortium in
2014 (SEQC/MAQC-III Consortium or SEQC for short) in a se-
ries of publications. SEQC considered sensitivity, transcriptome
coverage andDE.[122] SEQC utilized the Affymetrix U133+2 array
(older array with 3’ biased probes) and compared performance
with at the time state of the art RNA-seq (which was not like-for-
like in terms of cost). RNA-seq unsurprisingly discovered novel
exon-exon junctions and transcripts versus what was possible
with the older array. SEQC also reported that relative expression
results were consistent among different RNA-seq platforms, but
only if specific ad hoc filters were used.[122,123] Notably, SEQC
reported a comparable performance between RNA-seq and the
U133+2 array technology, with the best DE results produced by
the U133+2 array (See Figure 3e in ref. [122]). These observa-
tions had little impact on how array performance was presented.
Note that the data provided by the 2014 SEQC consortium study
is summarized to “ref_seq” RNA identifiers and thus the total
number of genes detected by RNA-seq was at least 50% lower
than claimed (See https://doi.org/10.5281/zenodo.7430956 for
more details). In general, we believe that the conclusions reached
in 2014 need to be revisited to accommodate comparison be-
tween typical RNA-seq andmodern high-density array using best
practices.[2,54]

The SEQC publications did not discuss technical reproducibil-
ity of short-read RNA-seq in much detail nor did they study bi-
ological replicates.[122] They did note that including genes with
very high counts (top 10%) exaggerates any reproducibility calcu-
lation (See Figure S22, Supporting Information[122]). For the re-
maining transcriptome, technical reproducibility was reported as
beingR2 = 0.7, similar for biological replicates using theHTA 2.0
array (R2 = 0.8,[2]). Unfortunately, many studies still quote erro-
neous values for reproducibility. Asmentioned above, specialized

sequencing protocols will probably profile short RNAs (<50 nu-
cleotides) better than arrays.[125,126] However, independent tech-
nical replicates are difficult to locate for this type of RNA-seq data,
and estimating consistency has numerous caveats. In general,
discussion of technical reproducibility is rare in the literature. In
addition, raw RNA-seq count data can often be modified—prior
to statistical modeling—adding a small positive signal to all val-
ues prior to log transformation. When applied to the extremes
of signal abundance this can lead to misleading conclusions (See
Figure 5 in Ma et al.[124]).
Does RNA-seq deliver the promised unbiased coverage[69,70]

of the transcriptome? According to the latest release from
the Genome Reference Consortium, the human genome
(GRCh38.p13) consists of>20 000 protein-coding genes,>24 500
non-coding genes,[127] and >15 000 pseudogenes[128] and these
collectively give rise to>245000 possible transcripts.While>50%
will show low or no level of expression in any given cell type,
low-expressed genes nonetheless serve vital roles in physiology,
for example, transcription factors, signaling kinases and recep-
tors. For RNA-seq, a gene known to be expressed but not de-
tected (false negative) in a cDNA library, returns a “zero value”;
while a value will be generated for each probed expressed gene,
in each sample, using the modern array, down to the level of de-
tection of that platform. Existence of “zero values” across sam-
ple rows is an underappreciated problem for RNA-seq,[120] rep-
resenting up to 50% of the data file for projects using typical se-
quencing depths (30–100 million read alignments). How those
“zero values” aremodelled is critical and can impact on estimates
of variance within the dataset and thus influence false discov-
ery rate (FDR) calculations.[129–131] Missing values are problem-
atic for classification and regression models because they modify
the sample size being analyzed per gene. Further, if the aim is
to test the performance of a multi-gene classifier, the assessment
in any individual sample may be compromised by the stochastic
coverage achieved with RNA-seq. If instead of raw count values,
the investigator is provided “transformed” data by a core facility
service, the complexity introduced by “zero counts” would be ob-
scured.
To illustrate the constitutively expressed transcriptome for hu-

man muscle tissue, we produced plots for five RNA-seq stud-
ies of human muscle tissue.[57,119,120,132,133] Details of the code
used, and input data can be found here https://doi.org/10.5281/
zenodo.7430956. We found that between 12 000 and 15 000
genes are consistently detected in all samples from each indi-
vidual study. Notably, only 8700 protein-coding genes were ex-
pressed in all samples across all studies (Figure 1A) while the
expected figure should be closer to 16 000 protein coding genes
for muscle tissue.[134] After removing Study B, somewhat greater
consistency was observed across the remaining studies (Fig-
ure 1B). Muscle tissue obviously does not express all protein-
coding genes, yet it is implausible that healthy human muscle
expresses such a wide repertoire of study-specific protein-coding
genes (Figure 1A). Further, only a small number of non-protein-
coding genes were detected across these RNA-seq studies and in
an inconsistent manner. Thus, each study consistently detected
a few thousand genes that were not consistently expressed in
the other four studies and therefore the detectable transcriptome
(or background) for the same tissue varies greatly between each
RNA-seq study. This variation has major implications for the
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Figure 1. Coverage of the human muscle transcriptome. We consider the core (or constitutive) transcriptome for skeletal muscle from 810 sedentary
humans. Five (n = 53-278) short-read RNA-seq data sets profiling skeletal muscle (total = 619. RNA-seq.A = FUSION cohort (≈60 million reads, n =
278,[133] RNA-seq.B = GESTALT cohort (≈60 million reads, n = 53,[120]), RNA-seq.C = Robinson cohort (≈44 million reads, n = 74,[57]), RNA-seq.D =
Kulkarni cohort (≈34 million reads, n = 136,[135]) and RNA-seq.E = Rubenstein cohort (≈29 million reads, n = 78,[132])). A threshold for a gene being
detected in a cDNA library typically relies on a threshold of a minimum of 5, 8, or 16 raw counts per gene[122] and we have utilized >5 in the present
analysis. To count as being constitutively expressed (e.g., tissue type defining) each gene should reach this threshold in every sample within a study.
Modeling of disease genes can reduce this threshold to being detected in all case samples (for example). Defining the constitutive transcriptome is very
critical for the interpretation of pathway analysis and so we focus on genes that were above background noise in each sample, within a given laboratory
experiment to subsequently illustrate the impact on pathway statistics. The RNA-seq data are contrasted with data produced using amodern high-density
array (HTA 2.0, n = 191[2]). A) Examination of the genes consistently detected per study using RNA-seq and their overlap across studies, including major
biotypes. Each cohort (A–E) has a further 10–15% of protein-coding genes are expressed in every sample but unique to that RNA-seq analysis B) As
the RNA-seq data set produced less reliable data, the core genes expressed using RNA-seq (>95% of which are protein-coding) are re-plotted omitting
RNA-seq.B cohort. C) Comparison of the four RNA-seq cohorts A,C–E) with the muscle HTA 2.0 array data. The array data is processed to remove all low-
performing probes (≈2 million), and then after summarizing at the probe-set level (ENST), only probe-sets with signals above 2 log2 units are retained,
equating to >1SD absolute signal value.[2,30] This plot shows that the array captures a far more comprehensive view of the noncoding transcriptome.
D) Application of a more conservative signal filter to the HTA data reduces the number of reported genes (some of which are genuine signals). The list
of long noncoding RNAs (n = 8847) is contrasted with the other RNA-seq data sets from (B) using a Venn diagram tool.[136] Around 20% of those lost
with this more severe arbitrary filter were in fact expressed in all samples form one of the RNA-seq datasets. Further details of the code and input data
can be found here https://doi.org/10.5281/zenodo.7430956.

validity and reproducibility of any subsequent pathway analysis
([79,82], see below).
Due to improvements in design since the 2014 SEQC

studies,[122,137] modern arrays now cover most of the annotated
transcriptome, detecting ≈10% more protein-coding genes than
RNA-seq, in the example we present (Figure 1C). For noncod-
ing RNAs, the difference between RNA-seq and modern arrays
is far more pronounced. Long noncoding RNA (lncRNA) can
be human-specific[127,138] modulate key epigenetic events[139–141]

and, despite their name, are increasingly noted to also con-
tain atypical open reading frames,[142] that code for novel short
peptides,[143] or catalytic RNAs.[141] When RNA-seq was used to
define the human tissue transcriptome in 2015,[144] we noted a
major under-reporting of lncRNA expression[2,54] in three human
tissues.[2,30,54] In fact, RNA-seq consistently detects only ≈1000
lncRNAs in humanmuscle per study, and with moderate overlap
between studies (Figure 1A,D). Arrays contain probes for nearly
10 000 lncRNAs using an ensembl-based CDF map (Figure 1C)
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Figure 2. Distribution of abundance of different transcript classes. A) using the data from n = 191 human muscle samples[2] profiled on the HTA
2.0 array, the distribution of the log2 signal is plotted (median, interquartile range, and full distribution) for protein-coding (grey), lncRNA, pseudo-,
and mitochondrial genes. The average abundance of mitochondrial-related genes is greater than other classes of RNA. B) Using the largest muscle
RNA-seq data set (RNA-seq.A = FUSION cohort (n = 278,[133]) and the data processing steps described in Figure 1 legend, the same classes of genes
are plotted—albeit the total number of genes is lower than for the HTA data. Scaling to transcripts per million (TPM)—normalized counts to gene
length—indicates that RNA-seq reports lncRNA expression as lower protein-coding genes—comparison of count values across genes is not necessarily
valid with RNA-seq data. C) The lncRNAs detected by RNA-seq are in fact a sample from across the range of abundances of lncRNA quantified by the
array indicating abundance does not explain their detection by sequencing. D) The lncRNAs detected by RNA-seq are a sample from across the range
of cohort-wide variation (CoV, coefficient of variation) of lncRNA quantified by the array. In C and D, the black “violin” represent the median value for
the RNA-seq detected, calculated from the array data, with the orange diamond reflecting the entire array lncRNA data. Further details of the code and
input data can be found here https://doi.org/10.5281/zenodo.7430956.

and most of the lncRNAs detected across the four RNA-seq data
sets are detected by the array. When a conservative signal detec-
tion filter is applied to the array data, there are still>8000 lncRNA
detected (Figure 1D) and of those removed, 20% were detected
in at least one of the RNA-seq studies. Thus, routine short-read
RNA-seq profiling of human tissue appears to miss most of the
lncRNA transcriptome.
Failure to be represented in the cDNA library is the most likely

reason RNA-seq data show poor agreement for lncRNAs across
data sets and only a fraction of those detected by array (Figure 2A–
D). LncRNAs lack extensive poly-A tails and are therefore not ef-
ficiently incorporated into cDNA libraries by routine RNA-seq
protocols.[145] What drives the stochastic nature of lncRNA de-
tection between comparable RNA-seq studies? We illustrate that
lncRNAs detected by RNA-seq originate from across the range
of expression values (array data) and thus are not just a subsam-
ple from higher abundant lncRNAs (Figure 2C). In fact, lncR-
NAs are routinely described as “low abundance transcripts”[150]

but this reflects a reliance on RNA-seq data. Using the HTA

2.0 array and a probe-filtered custom CDF[2,54] the abundance of
lncRNAs is near-identical to protein-coding genes (Figure 2A).
Other classes of non-translated RNAs—such as pseudo genes—
which act as miRNA decoys and regulatory molecules[128]—are
also expressed with abundance not that distinct from protein cod-
ing genes (Figure 2A,B). A genuine low abundance gene, repre-
sented in a cDNA library, combined with very deep sequencing
would result in counts, while an array might not report a signal
(the modern array is able to detect transcripts form minor cell
populations[28]—see below). This hypothetical benefit of RNA-
seq is not encountered in most clinical studies, as the cost of very
deep sequencing is prohibitive and deep sequencing introduces
other biases, compromising the analysis of the data (see below).
In contrast, RNA-seq detected lncRNAs did tend to originate

from those which exhibit less variable expression (array data)
across muscle samples (Figure 2D). This more consistent expres-
sion may partly explain why they were detected consistently in all
RNA-seq profiles, for a given study—but not their lack of consis-
tent expression across studies. A lack of appreciation of biases
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Figure 3. The relationship between protein-coding gene abundance and the cohort-wide coefficient of variation for gene expression. HTA 2.0 data
used in Figures 1–3, and the RNA.seq data set A (FUSION cohort). A comparison of the coefficient of variation for each gene was made against the
rank order abundance to determine if variation was largely related to the detectable abundance. A) Using array data, the coefficient of variation for
each protein-coding gene (common to both studies) versus the rank order of intensity values for gene expression is plotted. B) Using RNA.seq data,
the coefficient of variation for each protein-coding gene (common to both studies) versus the rank order of intensity values for gene expression is
plotted. Note that 43 (HTA) and 89 (RNA-seq) extreme CoV values are not in plot axes. Further details of the code and input data can be found here
https://doi.org/10.5281/zenodo.7430956.

within RNA-seq data has led to an increasing number of erro-
neous conclusions regarding tissue- and cell-specific expression
for lncRNAs.[2,146–148] This aspect of transcriptome coverage also
impacts on pathway analysis of single-cell sequencing, as most
methods to date quantify three or four thousand transcripts per
cell. Biased in high abundance RNA from metabolic genes, this
has implications for the nature of sub-clusters of cells based on
gene expression.[73,149] In summary, cDNA libraries produced by
RNA-seq protocols appear to have stochastic properties, ensuring
genes are missing seemingly at random, such that in practice
modern arrays provide broader and less biased—by biotype—
coverage of the transcriptome.
The ability of each method to reliably model DE is also im-

portant. Coverage is vital in this context; however, variance in
gene expression (biological and technical) is key. Variance is not
equally distributed across the rank order of counts (RNA-seq) or
signal (array), and thus power to detect DE modeling will be in-
fluenced by gene “abundance”. It is estimated that for RNA se-
quencing to quantify DE of lower expressed genes to the same
degree as modern arrays, 150 million[98] or even up to 1 billion
reads may be required.[151] For protein-coding genes, commonly
detected in both RNA-seq and HTA 2.0 array, the coefficient of
variation (CoV) for the RNA-seq data is greater than observed us-
ing the array (Figure 3), particularly as the rank of normalized
count values decrease (Figure 3B). This relationship is not seen
with array data (Figure 3B), implying there is less bias in quanti-
fying DE using the array (at least in this example).
Data generated by modern arrays or short-read RNA-seq dif-

fers in other substantial ways. Observations presented above in-
dicate that in practice themodern array detects more of the tissue
transcriptome, with less bias (biotype and abundance). Greater
variation, with RNA-seq, should convey a disadvantage in detect-
ing DE, yet the SEQC reported that RNA seq outperformed old
arrays for drug-induced DE,[137] particularly for genes expressed

at low levels. However, the opposite has since been reported
when RNA-seq was compared with amodern array, with theHTA
2.0 array detecting ≈25% more DE than RNA-seq—leading to
the discovery of more regulated pathways.[145] The same authors
noted that several low-expressed protein-coding genes detected
by the array were not detected by RNA-seq.[145] Recent modelling
concluded that modern arrays quantify “low signal” genes more
accurately,[98] with highly abundant genes being assayed more
equivalently. Indeed, DE analysis of abundant genes will gen-
erally produce similar conclusions when comparing arrays with
RNA-seq[118] yet this sort of outcome does not satisfy the intended
purpose or utility of global transcriptomics. Other recent reports
have also concluded that modern high-density arrays are more
sensitive;[152] and this is before any added benefit of using an op-
timized CDF design. Thus, any claim that RNA-seq is superior at
detectingDE—in a like-for-like setting—is probably incorrect, es-
pecially for the many genuinely expressed genes, it fails to detect.
Systematic differences between the occurrence of zero counts be-
tween cases and controls requires special attention inDE analysis
of RNA-seq data, given that zero counts are not synonymous with
“not expressed”, and the profound influence zeros (or “adjusted”
zeros) have on any estimation of group mean variance.
Thus, so far, we have noted that many transcriptomic ar-

ticles often begin with restating that RNA-seq produces less
biased data and are more sensitive than microarray-based
methods,[70] claims that are partly attributable to early inequitable
comparisons[69] and claims that now should be retired. In prac-
tice, the modern high-density array offers superior coverage for
similar costs, and in the following sections, we cover some of
the reasons that underpin these empirical observations (Fig-
ures 1–3). We highlight why coverage that is broad and of limited
bias determines the validity of downstream pathway analysis—
something very relevant for correctly modelling single-cell se-
quencing data. We also note that the array relies on a more
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Figure 4. Summary of the transcriptomics workflow; from sample processing to statistical analysis, and storage of raw data.

standardized informatic workflow, using methods found to be
robust,[152,153] and produces raw data files which havemuch lower
long term storage requirements (Figure 4).

4. Key Differences between Transcriptome Profiling
Technologies

4.1. Composition of the cDNA Library and Depth of Sequencing

Short-read RNA-seq profiles a cDNA library (not RNA) and
this cDNA library is not a complete representation (“coverage”)
of the transcriptome. Even exceptionally deep (and costly) se-
quencing will only detect a gene if a copy is present in the
cDNA library.[152,154,155] Coverage is sensitive to RNA degradation,
and signals from inferior cDNA cannot be salvaged by deeper
sequencing.[156] If a low expressed transcript is “jackpotted” dur-
ing cDNA synthesis – an early, random selective PCR amplifica-
tion event—then deeper sequencing can further exaggerate this
bias. Estimates have been made for the necessary sequencing
depth per experiment, but these will be context specific (genes
of interest, library quality etc.), and reassurances that 20–50 mil-
lion read alignments are sufficient will not cover every situation.
Characterizing array performance as an equivalent depth of se-
quencing is also difficult. For example, ≈65 million reads are
reported to match the older 3’ Agilent array[157] and 40 million
aligned reads for the old U133+2 array.[123] Tomatch the HTA 2.0
Affymetrix array, the required read depth has been estimated to
be >150 million paired-end reads (ThermoFisher.com). The fact
that the HTA 2.0 array provides quantification for >50% more
transcripts than 50 million paired-end reads (Figure 1C), illus-

trates that these estimates are not reliable. Variations in “effec-
tive” sequencing depth is mostly ignored, that is the depth of
sequencing for most expressed genes, after consideration of the
extreme number of counts attributed to the few very high abun-
dance genes, for example, inmuscle this would bemitochondrial
genes.
If the background transcriptome (constitutively expressed pro-

tein coding genes) is not easily defined or varies between replicate
studies (Figure 1) then ontology pathway analysis will have ques-
tionable validity and reduced comparability across studies.[79,82]

Failure for a genuinely expressed gene to make it into an RNA-
seq cDNA library results in a “zero count” entry in the data file—
providing the exact same profile as a gene that is not expressed.
Visual inspection of raw count data reveals that “zero counts” pre-
dominate for ≈50% of the genome in any given RNA-seq study.
A small positive value can be added before the transformation
of counts to other units, results in obfuscating these “zeros”.
This type of standard data manipulation complicates the esti-
mate of variance across the data[158,159] impacting for example,
on permutation-based FDR calculations.[131] It is challenging to
know if the “zero counts” represents a failure in the cDNA library,
a genuine lack of expression or insufficient depth of sequencing.
For lncRNA, we show that lack of detection almost certainly re-
flects a failure in the cDNA step, with limited consistency and
low coverage across five independent RNA-seq studies, yet most
“RNA-seq detected lncRNAs” are detected using the array (Fig-
ure 1D).
Two further conclusions can be reached if we consider the re-

lationship between the number of samples in a study with zero
counts (for each gene) and the average expression (excluding
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Figure 5. The relationship between protein-coding gene levels and the number of zero-count observations in RNA-seq. A) For each protein-coding gene
in RNA-seq.A dataset (n = 278,[133]) the mean is calculated by averaging all non-zero count values, and percentage samples with zero counts are plotted.
The insert shows the full range of read counts, and the main plot is zoomed in to the range of 1–103 read counts. The blue box highlights that for many
protein-coding genes, even with relatively low reads, there are no zero counts across most of the range of counts. The red box highlights that for low
abundance counts, the range of zero counts ranges substantially, from <20% to close to 100% of clinical samples. B) For the same plot in (A), instead of
mean read counts in RNA-seq, mean HTA 2.0 array signals of the same genes are plotted on x-axis to show the relationship between the gene zero-count
frequency in RNA-seq and gene abundance detected in the array. As we have noted when comparing the protein-coding genes detected in the large
RNA-seq datasets ([116] Figure 2), a few thousand protein-coding genes missed by the RNA-seq studies. Many of the lower abundance genes would not
have zero counts in some samples if the cDNA library step reliably reflected the composition of the transcriptome or to a lesser extent, the sequencing
was deeper (resulting in more time and costs). Thus, if we plot the abundance value for a protein-coding gene using the HTA 2.0 data and the zero-count
frequency for that gene from the RNA-seq analysis, it becomes more evident that many robustly expressed genes show zero counts when they should
not (purple box). In contrast, the second group of zero-count genes is likely a reflection of their low abundance and lack of inclusion in the cDNA library
(orange box). Note for the HTA 2.0 array platform, the minimal signal for a genuinely expressed muscle transcript is in the 2.0 to 3.0 log2 signal range.
Further details of the code and input data can be found here https://doi.org/10.5281/zenodo.7430956.

the influence of those zero values). First, when we plot the fre-
quency of zero counts (RNA-seq), against the relative abundance
of protein-coding genes determined by RNA-seq or array we can
see that many genes even with relatively low counts, for example,
6–50 reads, have consistent signals in all samples (blue box in
Figure 5A). Second, many protein-coding genes with >50 counts
are detected only in a subset of human muscle tissue (Figure 5A,
red box). Some of these may relate to variations in phenotype.
However, when we utilize the gene expression abundance val-
ues from the array data, we also observe that abundance does not
explain “zero counts”, as there are genes with low signal (array)
yet have zero counts in 0–100% in the biological replicates (Fig-
ure 5B, orange box), as well as robustly expressed (array) genes
(Figure 5B, purple box) with zero counts. Together these obser-
vations indicate that zero counts do not reliably reflect lack of
expression[158,159] but reflect other technical deficits in the RNA-
seq process. Heuristics to include genes across fewer than 100%
of all samples might help address the question of whether a gene
is expressed in a subgroup of patients, yet it then alters the work-
ing sample size for data modeling, complicates the definition
of “background expression” and the threshold chosen should be
gene specific and thus complex to implement.

5. The Influence of RNA Processing Protocols

Sample processing steps impact what is discernible by any tran-
scriptomic technology.[160] However, certain steps are probably
far more influential than others. Ribosomal RNA (rRNA) rep-
resents most of the RNA in a clinical sample and will account

for >80% of all sequencing reads if not removed (notably, rRNAs
are physiologically relevant in the context of aging and growth).
Thus, rRNA is usually depleted using hybridization-based cap-
ture approaches[161] prior to making the cDNA library for RNA-
seq (leaving behind <20% of the rRNA). Alternatively, oligo-dT
primers can be used to enrich the cDNA library in polyadeny-
lated (poly-A) transcripts (avoiding rRNA). Libraries prepared
with rRNA depletion can better represent the diversity of RNA
molecules (e.g., those without poly-A tails), whereas those using
poly-A enrichment primarily detect protein-coding genes.[161] De-
pletion protocols for rRNA are in turn sensitive to RNA purifi-
cation methods.[151] Both of these methods introduce bias, for
example poly-A selection approaches fail to capture the expres-
sion of repetitive non-coding RNA elements—which can be im-
portant for defining treatment responses.[162] These two meth-
ods also alter gene quantification among commonly detected
genes, resulting in ≈50% of genes demonstrating DE from the
two cDNA libraries created from the same RNA sample.[162] This
result is predictable as many protein-coding transcripts can be
poorly polyadenylated, yet it illustrates that the choice of RNA
processing strategy is hugely influential.
As well as the additional costs, time, and variation introduced

by the rRNA depletion protocol, cDNA libraries created follow-
ing rRNA depletion typically require greater depth of sequenc-
ing (≈2.5×) to achieve comparable coverage of protein-coding
genes as poly-A enrichment.[163] Further, rRNA is not the only
high abundance RNA species, for example, mRNA encoding mi-
tochondrial genes (in highly metabolic tissues) or globin RNA
in the case of blood, and the contribution of these genes to
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total reads is highly variable across samples.[133] The result is that
there is large variation in the effective depth of coverage per sam-
ple, that is, the sequencing depth for most of the transcriptome.
Avoiding poly-A-based selection strategies may enable greater in-
clusion of non-coding RNA in the cDNA library[161] however the
library remains deficient in lncRNAmolecules, and this has led to
erroneous conclusions regarding cell-specific patterns of lncRNA
expression.[2,54,144,146]

Further, variation in RNA preparation is apparent when ana-
lyzing formalin-fixed and paraffin-embedded (FFPE) samples—a
storage choice for many clinical histopathology specimens. RNA
derived from FFPE samples suffers from degradation and is
poorly suited to poly-A enrichment protocols. Following rRNA
depletion, coverage can be limited, with reports of only ≈20% of
sequencing reads mapping to coding regions[157,163] while more
recently others[164] report better success from FFPE (>80% map-
ping), particularly with large amounts of RNA (1 μg). Often de-
graded, substantial additional quality control steps are required
to remove artifacts from the FFPE RNA-seq data.[165] Array proto-
cols can reliably profile the transcriptome fromFFPE samples,[34]

producing results at least comparable to fresh-frozen tissue an-
alyzed by RNA-sequencing.[166] Thus, the necessity for RNA se-
lection protocols to remove high abundance RNAs during short-
read RNA-seq workflows introduces bias and extra time and costs
and no current protocol resolves all the identified issues.[182–187]

We recommend that the high-density array is used with the
whole-transcriptome (WT) reagent kit[167] as it does not require
RNA selection prior to amplification or use of PCR and is associ-
ated with a broad representation of both coding and noncoding
RNA.

6. The RNA Amplification Step: PCR- versus
T7-Based Linear Methods

Each cell expresses a physiologically biased subset of the genome
that reflects function. The abundance will also vary, and a cell
may express some transcripts at>1000 copies, whilemany are ex-
pressed at<20 copies.[168] For most RNA-seq technologies, quan-
tification of transcripts expressed at these lower levels requires
amplification of the input RNA and this is accomplished predom-
inantly using PCR, amethod[169] that enabled next-generation se-
quencing by allowing amplification of adaptor-ligated cDNA in
hours, instead of days. However, not all RNA species are am-
plified with the same efficiency, and some are lost, while oth-
ers are selectively amplified. As many mRNAs for signaling pro-
teins or transcription factors are expressed less abundantly than
those coding for structural or metabolic proteins, biased ampli-
fication impacts on pathway analysis[82]—where the background
of “expressed” genes is ill-defined[79]—see below. Furthermore,
any biases introduced by the RNA isolation steps can be magni-
fied with each PCR cycle, and such events are not resolvable us-
ing informatics.[170] Errors introduced before or during PCR am-
plification are detectable using bar-coding or unique molecular
identifiers (UMI). UMI attempt to identify PCR duplicates (mul-
tiple reads amplified from the same cDNA molecule[170]) and in-
dicate that themost influential factors for PCR duplication events
are RNA input and sequencing depth. Interestingly, UMIs are
now being used to assemble “synthetic” long reads from standard
short-read sequencing of the fragmented cDNA library.[71]

In contrast, profiling of the transcriptome using arrays can
be done without amplification using biotin-labelled first-strand
cDNA synthesis.[97] More commonly in vitro transcription (IVT),
based on Eberwine’s work on linear RNA amplification,[171]

is used instead of PCR and only requires an RNA input of
100 ng.[167] IVT involves cDNA synthesis, first primed with
an oligonucleotide containing a T7-phage promoter recognition
site.[172] Following double-stranded cDNA production, T7 poly-
merase is added and directs the synthesis of antisense RNA
from the cDNA template, yielding cRNA (also called aRNA—
“antisense RNA”). This approach can amplify input RNA one
million-fold after two cycles, only relying on RNA from a single
cell.[173] The amplified aRNA pool is reported to closely resem-
ble the composition of the original input mRNA population, sug-
gesting that the amplification process has limited bias.[173] It also
appears that each RNA, especially for lower abundance genes,
is more consistent across samples, compared to PCR-amplified
RNA.[174]

Thus, it is assumed that library strategies produce an amplified
DNA library that faithfully reflects the original RNA input. Any
major deviations from this assumption have major implications
for cDNA library composition and the validity of downstream in-
formatics analyses.[175,176] An IVT approach has been adapted for
RNA-seq andwas noted to remove several PCR-related biases and
more closely approximate the original sample composition[177]

but it is not routinely used. The more recent adoption of cost-
effective UMIs and 3’ biased sequencing protocols, reduce the
influence of PCR artifacts, but cannot then address alternative
exon usage (“splicing”)—something RNA-seq was supposed to
deliver. UMI barcoding is also a common strategy for single-cell
and single nucleus sequencing, where transcript signals are esti-
mated at a gene level.[178] Direct RNA sequencing is an alternative
and very promising approach for transcript characterization (in-
cluding RNA editing and allele specific analysis) that remains in
development,[179] requiring large amounts of starting materials,
limited throughput, and high costs.
In short, there are no good methods to account for the prefer-

ential amplification of certain mRNAmolecules and the dropout
of others when PCR amplification is relied on, as is the case for
most RNA-seq protocols. All solutions that might address the
fundamental characteristics of either PCR-based cDNA library or
count-based sequencing also appear to introduce bias.[176] The
choice of library preparation kit substantially influences study
outcomes; thus, without due consideration,many of these factors
can explain the lack of replication of detailed findings across labo-
ratories when using RNA-seq[180] or when a comparison is made
between RNA and proteomics.[57] In our view, the best strategy
is to avoid PCR amplification (including any array protocol that
uses PCR).

7. Data Analysis Steps that Contribute to the
Performance Characteristics of the Transcriptome
Profiling Technologies

The type of the raw data produced by arrays and sequencing dif-
fers fundamentally. While in-depth discussion of all the implica-
tions is beyond the scope of this review, we will explore some of
the key differences. Regardless of the method, the raw “signal”
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must be processed through several steps, including quality con-
trol, normalization, quantification/scaling, and summarization
of gene expression (ideally at the transcript level). These steps en-
able statistical comparisons for the same RNA across conditions
or relative to a clinical phenotype. RNA-seq analysis needs to im-
plement a model to estimate how each read relates to the tran-
scriptome, then to “count.” In contrast, Affymetrix array probes
are manufactured as a fixed 25-mer DNA sequence (which needs
to be checked for specificity). Data processing of modern array
data relies on few options, such that there is a good consensus
after ≈17 years of use (1998–2015). Analysis of RNA-seq data has
proven far more challenging and 15 years on (2007 to 2022) there
is no consensus; and one is unlikely to be reached that serves
all types of data.[115,181–183] Indeed, major limitations of the most
frequently used RNA-seq computational tools, applied to clinical
sample sizes, have only recently been uncovered,[153] implying
that many “unknown unknowns”[184] remain. Arguably more in-
formaticians than ever are working with transcriptomic data; far
more than ever worked with array data, which conveys the na-
ture of the challenge ahead for reaching a consensus for themost
appropriate informatic solutions for all types of novel transcrip-
tomics.
Before discussing the distinct signals produced by arrays and

short-read RNA-seq, it is worth briefly commenting on labora-
tory validation methods. Real-time qPCR[185] is often portrayed
as a gold standard validation tool in transcriptomics. The SEQC
transcriptomic quality assurance concluded that two qPCR re-
sults were no more reliable or quantitative than two sequenc-
ing results; presumably because both rely on PCR.[122] Real-time
qPCR has no standard for RNA input and lacks widely adhered
to laboratory standard conditions. It is also often used without
regard to the exact RNA sequence (pre-configured kits) and can
produce a signal from a very minor component of a tissue biopsy
(a positive or a negative characteristic depending on how the data
is being presented). That real-time qPCR has been put forward
as a “gold standard” tool for validating the results of genome-
wide transcriptomics is not, in our view, logical. Not least be-
cause when used, only a few of the “best candidates” from the
transcript wide profiling are selected. Real-time qPCR also re-
lies on housekeeping strategies for quantification, distinct from
globalmethods and often does notmeasure the same sequence as
the global method. Carefully considered real-time qPCR can be
useful for qualitatively confirming differential exon usage, but
when used to claim validation of new informatic models, tran-
scriptomic identified candidates should be selected from across
the range of false discovery rates (FDR) noted in the study[54] to
better illustrate the model’s true performance.

7.1. Processing the Signal from Modern Arrays

Arrays produce a continuous signal, for a given RNA, via hy-
bridization of labelled fragments to short 25-mer DNA probes
dedicated to a single RNA sequence. These probes are combined
to estimate the abundance of a transcript, and at the transcrip-
tome level, these continuous signals are approximately normally
distributed when plotted on a log2 scale. Early in their develop-
ment the scanners used to process arrays had a limited dynamic
range easily leading to signal saturation. In practice, a majority of

probe-sets show a wide dynamic range—at least 7 log2 units
[100]

or more. For example, across muscles from 191 sedentary fasted
adults,[2] the signal for themitochondrial gene, pyruvate dehydro-
genase kinase-4 (PDK4, ENST00000473796) staggeringly varies
from 141 to 2800 unlogged units. Interestingly, this heterogene-
ity might explain why PDK4 is frequently identified as differ-
entially expressed in small human studies.[186] Signals from the
HTA array probe-set that detects expression of a contractile pro-
tein known to vary greatly across people, Myosin Heavy Chain
IIx (MYH1, ENST00000226207,[187]), ranges from 14 to 7660 un-
logged units.[2] This illustrates, contrary to predominant opinion,
that modern arrays possess considerable dynamic range.[69,70]

The continuous nature of the signal from modern high-density
arrays enables well-established statistical methods for DE and re-
gression analysis, with limited raw data processing.[129,130] The
lack of 3’ bias (as probes are designed against all exons and both
untranslated regions (UTR) ) and the more quantitative nature
of the GC corrected signal should also help when modelling dif-
ferential exon usage.[54,188] On the other hand, the HTA array
is not optimal for profiling small RNAs, such as mature miR-
NAs, as these are shorter than a single probe, and here—with the
help of a modified library protocol—sequencing may have some
advantages.[125,126]

Array and RNA-seq data requires “normalization” to be made
more comparable across samples, prior to group based statis-
tical analysis and such methods assume that most of the tran-
scriptome remains unchanged across conditions, such that most
data acts as a housekeeping signal.[189–191] Physiology studies, of-
ten using small sample sizes, reporting that 50% of genes are
differentially regulated, are for this reason, unlikely to be cor-
rectly processed. We have noticed this is not uncommon with
RNA-seq studies and speculate it may also reflect the influence
and mishandling of zero counts. Pre-processing and normaliza-
tion algorithms for arrays, such as MAS5, PLIER, and dChip,
are no longer used and the most common method employed
for Affymetrix arrays is robust multi-array averaging (RMA).[192]

Packages that implement RMA can to some extent increase low-
level correlative structure across the transcriptome while com-
pressing the dynamic range of the data.[193] Iterative rank-order
normalization (IRON) allows the combination of some of the
most favorable features from dChip, MAS5, and RMA—yielding
some improvements in performance.[193] The default implemen-
tation of IRON is far more time and data-storage efficient (imple-
mented in C program via terminal) than RMA (implemented in
aroma.affymetrix R package) and is our preferred choice. Using
IRON, one can process new samples, without reprocessing all
previous samples (something that RMA cannot do). We also pre-
fer IRON as it appears to limit introduction of correlative struc-
ture compared with RMA, a factor that can influence network or
classification analyses.
Normalization is applied within a study and to a particular ar-

ray type. Merging raw data across different technologies remains
a risky pursuit, despite some enthusiasm,[194] and it is not ad-
visable in our view—not least because the probe design varies
across arrays, use of a gene level identifier can hide substan-
tial differences in the sequence that is being quantified. Meth-
ods developed to remove batch-related “noise” cannot easily dis-
tinguish biological from technical variation in routinely collected
samples.[195,196] The large number of technical considerations[197]
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and a lack of substantial positive control data (coupled with path-
way level validation issues discussed below), means that merg-
ing raw data across technologies is not likely to be a valid pur-
suit. Meta-analysis of individually processed data is a reasonable
alternative.[198]

There are nonetheless some options prior to applying statis-
tical analysis to data generated by the modern array. For exam-
ple, using an HTA array with a custom CDF typically produces
100 000 rows of data (probe-set) summarized at the transcript ID
level. In the processed data file, each row represents a transcript
(e.g., ENST) but includes recycled data—as an exon can belong
to more than one transcript. It is not easy to know a priori which
ENST is the more representative transcript for your experiment,
andmany cells express more than one variant.[78,199] It is possible
to select one expressed ENST per gene (resulting in≈30 000 rows
of data (genes) for a human tissue profile) based on which shows
the greatest signal or greatest variation, or some heuristic combi-
nation, across your samples or between groups. This remains a
stage in array data processing that could be optimized using ma-
chine learning. Overall, the narrow suite of analytical options for
processing modern arrays ensures that it is much easier to track
analysis from the raw data, promoting research transparency, and
reproducibility. Thereafter, DE analysis can be carried out using
simple ANOVA models combined with correction for multiple
testing or utilize methods such as Significance analysis of mi-
croarray data (SAMR) that models a false discovery rate.[129,130]

Modest changes in array analysis software have tended to only
lead to subtle changes in the outcome of any analysis—except
for the issue of accurately defining the “background” reference
for pathway or ontology analysis (see below).

7.2. Processing the Signal from Short-Read RNA-seq

Computational methods for adequately processing of RNA-seq
data are still evolving, and the optimal choice may be experiment
specific.[115] Processing raw sequencing data is more complex
than for array data, and there are hundreds of potential combi-
nations of methods,[115] with dozens in common use.[70] A recent
comparison of 278 different options, including mapping, quan-
tification, and normalization steps, found that the pipeline cho-
sen profoundly impacted on gene expression analysis.[200] Others
report that the number of DE genes substantially varies depend-
ing on the processingmethod, from208 to 9500DE[201]—with the
later challenging the validity of the normalization ormodelling of
counts. Other fields have recognized limitations of transforming
counts to enable statistical analysis.[158] This is particularly prob-
lematic in the case of RNA-seq, where a zero count may reflect
a laboratory failure and not the biology of the sample, or failure
to sequencing to a sufficient depth (or variation introduced by
“effective” depth).
The first stepmaps short reads to a reference annotation of the

genome, a process that can be non-trivial.[108,202,203] The numer-
ous options introduce bias, yet normalization, andDE algorithms
are thought to contribute most to the variability between analy-
ses or across studies.[200,201] Traditional alignment tools are slow,
and more recent methods, that is, Salmon and Kallisto[202,204])
were introduced to save time and estimate which transcript
a read belong to, using graph theory. Salmon adjusts for nu-

cleotide bias, impacting on subsequent statistical analyses[204]

to debatable extent (https://www.liorpachter.wordpress.com/tag/
salmon/). While very informative, Pachter’s commentary does
not dwell on the 2–4% difference between these two near-
identical methods, a difference that would yield thousands of dis-
tinctly quantified transcripts; more than a typical biology-driven
DE signature. In the Salmon paper, >1000 regulated transcripts
were found from the simulation analysis when there should be
none.[204]

Results from traditional alignment tools and pseudo-
alignment tools[202,204] differ for lower count genes,[205] that
is, a majority of the rows of “data” in an RNA-seq study (Figure 5
and see ref. [151]). Further, reads are typically assigned to a
gene (and not a transcript) and this obviates the production of
information on alternative splicing. Indeed, Stark et al. recently
illustrated several additional methodological weaknesses in
short-read RNA-seq informatics pipelines,[70] including that use
of “fast” tools that introduce variation[205] on how multi-mapped
reads are assigned to the estimate of gene expression (as a
source of bias,[206]). One promising DE strategy, to address the
uncertainty regarding which transcript to assign a read too, is to
calculate an aggregated p-value from analysis of each possible
option.[207] This strategy has also been applied to ontology analy-
sis, but this may be far more challenging to interpret (see below).
Further refinement, aggregating DE analysis across exons has
also been explored.[208]

Typically, once reads are assigned to a specific part of the
genome, counts can be adjusted to the total number of mapped
reads in a sequencing run, for example, counts per million
(CPM). At this point, counts are still not comparable between
“genes” as counts require adjustment for GC content[118] and
length related bias. Fragments permillion readsmapped (FPKM)
and the transcripts permillion (TPM) are attempts to scale counts
data within a sample[108] or if multiplexed using barcodes, within
a sequencing lane. Note that multiplexed sequencing assumes
that each sample contributes equally to the library prior to se-
quencing. Introduction of these types of transformations led to
expectations that count values would be quantitative, and com-
parable across labs, or sequencing runs.[134,209] FPKM, aims to
correct counts per gene by length (“counts per kilo base”) and li-
brary size (total counts in million units) to scale data and allow
comparison within sample runs. It does not consider the idea of
what we call “effective” sequencing depth (depth after consider-
ing variable coverage because of extremely high abundance tran-
scripts). TPM is a related transformation, adjusting the “counts
per kilo base” for the total “counts per kilo base” of each sample
(million units)[209] yet as we illustrate here (Figure 6), the impact
of adjustment is not consistent.
A read can be legitimately assigned to more than one tran-

script from the same gene, and thus it is unknown which tran-
script “length” to correct for. We illustrate the influence of tran-
script length by plotting transformed count data (using FPKM
and TPM), correcting to the longest and shortest transcripts for
each gene. FPKM is systematically influenced by length, and this
is a problem as the transcript used may shift between the condi-
tions (Figure 6A). The influence of changing transcript length
on TPM values is inconsistent (Figure 6B) because the choice
affects both the nominator (“counts per kilo base”) and the de-
nominator (total “counts per kilo base” in each sample). The bias
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Figure 6. Adjusting RNA-seq counts by different transcript lengths. To illustrate the issue of scaling to gene length, we plot the same data normalized
using two different methods that scale reads to gene size and are supposed to be interchangeable. A) FPKMmethod is used, and the counts were scaled
to either the longest or shortest possible example for each gene. B) TPM method is used, and the counts were scaled to either the longest or shortest
possible example for each gene. Further details of the code and input data can be found here https://doi.org/10.5281/zenodo.7430956.

introduced by attempting to scale count data by gene length
impacts on downstream statistical models.[209] Adjusting by the
wrong transcript length results in DE under conditions when dif-
ferential splicing has occurred or as articulated by Stark et al.;[70]

“if the main isoform in one condition is half the length of the
main isoform expressed in the second condition (but expressed
at twice the “level”) it would look as if the genewas not regulated”.
Even after conversion of a read into a “scaled” count, the data

are not necessarily “normalized” in the traditional sense applied
to arrays or protein blots.[210] Global normalization requires a
general consistency of RNA expression to be true,[211] but in
projects sequencing libraries from clinical tissue samples, reads
for very high abundance genes can vary dramatically across sam-
ples, greatly altering the fraction of total reads theymake up. This
means that the effective sequencing depth across samples—for
most genes—is not well scaled by total aligned reads. System-
atic flaws in scaling strategies could lead to a high proportion
of genes being called DE. Recently, graph-based strategies have
explored normalization methods that may not be so dependent
on these traditional assumptions.[212] However, these methods,
benchmarked byDEmetrics,may not be valid for all types of anal-
yses, while attempts to fit the count-based data to a distribution
model, appropriate for DEmethods, are less accurate and control
FDR less well than desirable.[210] Stark et al. highlight that itera-
tive evaluation and selection of a normalization proceduremay be
critical to discover the validity of your pipeline, but final choices
must not be based on the outcome that fits best with the origi-
nal hypothesis.[70] Indeed, to avoid such a scenario, the inclusion
of two or more independently produced clinical data sets should
be incorporated in a single publication, to validate any pipeline
choices.[37,213,214]

Thus, if the analysis of an RNA-seq data set is to be done
thoroughly, many parallel data processing options should be
considered,[70] but this is almost never done due to a lack of
specialist expertise or perhaps a rush to publish. The increas-
ing number of models, especially those evaluated using simu-
lated data, may never solve the inherent limitations of the RNA-

seq laboratory steps.[211,215] It has taken nearly a decade to iden-
tify limitations[153] of the most utilized RNA-seq analysis tools
(DESeq2 and edgeR)—despite over 65 000 citations—and it may
take years for updated solutions to be fully explored. To compli-
cate matters further, RNA-seq software packages are frequently
updated, and the use of different versions affects the results
obtained.[216] For example, the choice of pipeline to analyze tu-
mor samples impacts on survival predictions.[200] Lack of report-
ing software versions and lack of clarity over optional settings
for your study, will drive a lack of reproducibility.[116] Thus, spe-
cific recommendations for processing RNA-seq data are not eas-
ilymade—and this would normally limit the utility of the technol-
ogy for translational or stratified medicine. Nevertheless, RNA-
seq has become the dominant technology and there is now an
urgent and ethical prerogative that these limitations are more
widely discussed, not least because alternatives methods exist.

7.3. Implications of Bias for Pathway Analysis and Other
Downstream Analyses

Identifying DE genes to then model which pathways are regu-
lated, represents a very common type of OMIC analysis. Most
methods used for DE analysis of RNA-seq data, typically involves
small sample sizes, and these same methods do not appear to
control the FDR adequately in larger clinical sample cohorts[153]

(how they adequately control FDR in a sample size of three bio-
logical replicates is also unclear). Methods applied to array data
to calculate DE are well established and, in our experience, ap-
pear robust across independent data sets.[54,129,130,217,218] Linear
modelling or logistic regression can be applied to array data[28]

and reliably identify genes correlated with a clinical status, even
across a variety of types of arrays.[2,26,35] Unless filtered to model
genes only expressed in all samples, regressionmodeling of rows
of RNA-seq data would encounter lots of missing data,[120] with
the actual sample size (per rows or column) impractical to define.
For quantitative network analysis, modeling can utilize databases
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(e.g., protein-protein interaction data) or take a direct data-driven
approach.[219] The basic principles[220] of data-driven quantitative
network analysis apply to all OMIC methods, whereby hundreds
(or even thousands) of independent samples are required to pro-
duce stable network results.[220,221] Most researchers do not ad-
here to such criteria, instead favoring methods that are simple to
implement yet do not provide reliable estimates of network stabil-
ity or adjust for multiple correlations.[219] Database driven path-
way or gene-ontology analysis[222–224] is used in many transcrip-
tomic projects and increasingly to summarize the conclusions of
multi-omic analyses (where their validity is especially unclear)—
and often relies on web-based tools[222–227] which can be difficult
to replicate.
Pathway-based analysis represents an additional “statistical”

hurdle beyond DE analysis—one that should confirm that a list
of DE genes reflects the biology of the experiment and not one
driven by noise or chance.[82] Pathway analysis can start with a
list of DE genes, identified by choosing an FDR threshold, that is,
an approximation of what is regulated. These adjusted p-values
(FDR) do not confirm that the driver for DE is biological—it could
still be driven by bias relating to RNAhandling, cDNA library pro-
duction or sample processing order. Most transcriptomic studies
include a table or plot of the enriched pathways as a major gen-
eral summary of the study. A recent survey identified that >80%
of published pathway analyses have serious problems,[79] quanti-
fying our earlier concerns.[82] In fact, the assumptions for calcu-
lating valid p-values for enrichment analyses are also known to
be violated (anti-conservative) to some degree.[81] In general, in
our experience, pathway FDR values in the 1 × 10−2 to 1 × 10−5

range probably do not reflect genuine differences, but rather de-
fects in the informatics procedures and biases in the laboratory
method.
It is simple to carry out a “less biased” pathway analysis, but the

consequences are usually loss of any significant results because,
in our experience, many results are driven by inappropriately de-
fined background[79] transcriptome. This is especially true when
you model a targeted proteomics data set and contrast that data
with the ontology database or genome, rather than the narrow
set of proteins measured. To calculate if a pre-defined pathway
(ontology) is enriched in a DE gene list, the list must be com-
pared with all genes that were possible to measure.[82] The list
should not be compared with the entire content of a database or
the genome (Figure 7) as this largely reports on differences be-
tween the biology of your sampled tissue and the database.[79]

Failure to use the appropriate background generates significant
FDR values irrespective of whether a real DE gene list or one re-
flecting an artefact is used.[79,82,228] While it can be reasonably
clear which genes were measured in an array experiment (Fig-
ure 7, Pale Green Circle), as we have illustrated above, this is
not the case for short-read RNA-seq—where for the same tis-
sue, the background protein coding transcriptome varied dramat-
ically. In RNA-seq data consistently expressed gene can be iden-
tified using thresholds of a minimum of 5, 8, or 16 raw counts
per gene[122] and some metric for the number of biological repli-
cates that should exceed this threshold. Alternatively, aminimum
of 1 count per million reads (5–100) has been used, yet it is un-
derstood that some minimal level of signal may reflect genomic
DNA and other artefacts.[70,176,221,229,230] When data quality is poor,
authors often choose thresholds of <1 count on average across

Figure 7. The categories of gene sets applied to functional enrichment
analysis. The correct comparison for any gene ontology enrichment anal-
ysis is to compare the set of DE genes (dark green) with the set of genes
detected (light green) as the background (light blue represents the per-
fect technology measuring the correct background). Using any other gene
list as background will result in false statistical enrichment categories (re-
flecting tissue and technology biases) and will obscure real events. Further,
if comparing two treatments (e.g., drugs) then using the incorrect back-
ground can remove valid GO categories from both sets of analysis and
thus obscure any differential influence of each treatment on the pathway
biology.

samples to define the detected genes and include genes that are
not expressed inmany of the samples.[120] This approach not only
influences the DE analysis, but it renders the definition of the
background transcriptome a moving target.
In the example provided for RNA-seq performance across clin-

ical studies (Figure 1), we illustrate that each yields a distinct
detectable background transcriptome for human muscle. Plot-
ting the results of each different background list with the con-
sistent and default contents of the pathway database, readily ex-
poses the pathway level bias in these “backgrounds” (Figure 8).
In this example we used g:Profiler and the Reactome database[224]

and three RNA-seq backgrounds and report that each lists exhibit
different biases, only some of which reflects the specialized bi-
ology of muscle tissue. The HTA array “detectable background”
also had some bias, but in this case for only a few biology-driven
metabolic and contractile-related pathways, while the rest had
moderate adjusted p-values (Figure 8A) which can arguably be ig-
nored by using a more conservative pathway enrichment thresh-
old. In contrast, for two RNA-seq data sets, >400 significant cat-
egories are noted (Figure 8B,C), many with 1 × 10−6 adjusted p-
values or better. Sampling sets of a few hundred genes at ran-
dom, to mimic a DE list from this data, would yield some of
these significant pathways each time. Thus, even when a study
is underpowered, and the validity of the DE analysis is doubtful,
“highly significant” pathways will still be “discovered”. This prob-
lem is not removed simply by larger sample sizes[231] or deeper
sequencing because it also reflects what we defined as “technol-
ogy” bias[82]—factors inherent in the laboratory steps.
Additional problems are revealed when a single list of

DE genes is compared with the different backgrounds gen-
erated from muscle tissue. In our example, a 729 DE gene
list was obtained from a clinical signature of muscle tissue
adapting to exercise,[31] and these genes are involved with
extracellular matrix remodeling, angiogenesis, and metabolic
adaptation[8,31,39,232,233]—well validated processes. The biological
process (BP) ontology category in DAVID[222] was used, with
the entire BP ontology database (obviously incorrect as it con-
tains genes that are not expressed in the experiment) and three
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Figure 8. Comparison of pathway-level bias in muscle background tran-
scriptomes derived from RNA-seq and the HTA array. In each case, the
genes detected, as described in Figure 1, were contrasted with the Reac-
tome database using g:Profiler and default settings. The significant path-
ways represent bias of muscle tissue versus the genome as represented
by the Reactome database, and bias introduced by the laboratory method.
A). HTA array transcriptome, with a total of 25197 gene IDsmapped to the
database, obtained 14 enriched pathways, many of which reflected aspects
of muscle biology. B) RNA-seq data set A, with 15139 gene IDs mapped
to the database, obtained 415 enriched pathways. C) RNA-seq data set B,
with 13841 gene IDs map to the database, obtained 402 enriched path-
ways. P values are BH adjusted -log10 values. The constitutively expressed
“background” transcriptome as measured by RNA-seq displayed bias for
an enormous range of generic processes, many of which appear method-
ological rather than biological in origin.

muscle background transcriptomes used to analyse the 729 DE
list (Figure 8). There were >450 or >300 significant BP ontolo-
gies (FDR <5%) enriched when using the DAVID database back-
ground or an RNA-seq background, respectively (Figure 9A,C),
of which 162 are unique to the database background, and 59 are
unique to the RNA-seq background. Use of the array-based mus-
cle expressed background resulted in ≈50% fewer BP categories,
with 178 non-redundant GO BP processes being significant (Fig-
ure 9D)with amedian FDRof 25%.Alarmingly, using theDAVID
GO BP background[79]—not so unusual to observe—yields a me-
dian FDR of between 5% and 10% for all categories! Many of
the GO BP ontologies deemed significant using these inappro-
priate backgrounds, tended to have modest fold enrichment ra-
tios and this metric can be used as an additional way to filter out
bias driven enrichment results. Notably, the common complaint
that pathway results are often generic in nature may reflect the
widespread misuse of the method.[79,82]

Use of an inappropriate background does not just yield false-
positive data, it can also lead to loss of information.Methods such
as TopGO or REVIGO can be used to prune the redundant na-
ture of the GO results produced by DAVID,[28,223] identifying sub-
categories responsible for driving the enrichment statistics. Ap-

plying this approach to the data in Figure 9A–D, resulted in the ar-
ray background having 68 categories with an FDR<5%, while the
RNA-seq background produces 143 categories. Notably, the use of
the RNA-seq background resulted in several categories related to
endothelial remodeling beingmissed (Figure 9E)—a core physio-
logical processes during muscle remodeling,[8,31,39,232,233] reflect-
ing angiogenesis. In contrast, when we utilized an “age gene ex-
pression signature”—one enriched in mitochondrial genes[30]—
and repeated the process used for Figure 9E, no enrichment
in mitochondrial pathways was noted when using the RNA-seq
background. This may reflect bias in the muscle RNA-seq data,
reflecting greater counts derived from high abundance mito-
chondrial genes,[133] yet clearly it represents a flawed pathway re-
sult. In our experience, background bias usually introduces false
positive GO results, but as we have illustrated in some cases
real observations, reflecting important but subtle gene expres-
sion programs, will be missed.

8. Modeling Alternative Splicing with Bulk
Transcriptomics

Alternative RNA splicing (AS, or alternative exon usage, AEU) is a
central determinant of the complexity of the proteome, occurring
with >90% of multi-exon genes.[54,144,199,234,235] Accurate model-
ing of AS/AEU provides information beyond transcript abun-
dance, allowing transcriptomics to capture an even greater pro-
portion of the biological variance in a clinical dataset. Currently,
long-read sequencing and advanced profiling strategies[127,179,236]

are used to establish if isoform-specific transcripts are produced
or not. Short-read RNA-seq was proposed as a method[69,70] for
routine quantification of AS/AEU events. As exons are shared
between isoforms of a gene, mapping RNA-seq reads to specific
transcripts is challenging, and the problem scales with the num-
ber of shared exons.[234,237–240] Established methods are mostly
suited to detect extreme changes—such as those that occur in
cancer or between cell types—rather than during physiological
modulation of transcript isoforms, or with less severe changes
in clinical disease status. Many reads that are exon-spanning
are also challenging to assign to specific isoforms as they can
be shared across several isoforms.[70] Clearly, any method—like
many newer RNA-seq protocols—that relies on a cDNA method
biased toward the 3’ end of the transcript, cannot study AS/AEU.
Recent attempts using iterativemodels, to assign reads to specific
transcripts report improved performance over Cufflinks, SLIDE
and StringTie—but still report precision and recall performance
at <70% and 40%, respectively.[241] This performance may be im-
proved using long-read technologies. Ongoing attempts to de-
velop laboratory methods, segregating transcripts by length prior
to processing and sequencing, partly serves to illustrate the wide
acceptance that existing methods to model transcript-level data
need improved.[242]

Both the HTA 2.0 and the updated version, the Clariom D ar-
ray, contain probes designed to span individual exons (“junction
probes”) in known transcripts, and these were intended to im-
prove the detection of AS of cassette exons.[98] There are very
fewmethods for studying AS/AEU using high-density arrays,[243]

with only one making direct use of these exon–exon junction
spanning probes,[244] and one which has subsequently been
adapted for RNA-seq.[245] We developed a pipeline to model AEU
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Figure 9. Functional enrichment pathway analysis using four distinct background transcriptomes. The background genes detected are the protein-coding
genes from Figure 1 or the DAVID database (April 2022). The 729 DE genes were contrasted with each background option using DAVID, with a minimum
of 3 genes per category and 10000 permutations for estimating the FDR. The red line represents the median FDR across the analysis, and values are
plotted for all ontology categories in the analysis (A) uses the entire DAVID database as background, (B) uses the RNA-seq data set A as background, that
is, 12190 protein-coding genes (C) uses the RNA-seq data set B as background, that is, 9389 protein-coding genes and (D) uses the HTA array muscle
transcriptome as background, that is, 18 605 protein-coding gene IDs (SD of>1 filter). The average FDR is a greater value (“less significant”) when using
the least biased background, as it better reflects all of the genes that could have been included in the 729 DE gene list. All other backgrounds introduce
bias and yield false GO categories. E) Use of the wrong background removes key modulated pathways. The 729 DE genes from an established clinical
model[8,31,39,232,233] were processed with each background option in Figure 9A-D using DAVID. Pathway categories with the range of 3–10000 genes per
category were used. To remove redundancy (in terms of GO terms) those results were processed using REVIGO (Resnik, least redundancy) before a
heatmap of the results was plotted using Morpheus (https://www.clue.io/morpheus). The fold enrichment values are used to color the categories—with
a blank value meaning that the category was not significant (FDR >5%). The boxes highlight key processes that were only detected using the background
produced using the HTA array.

called iGEMS,[54] building on a statistical model from Robin-
son et al.[246] iGEMS aimed to reduce false-positive results and
reliance on laborious visual inspection. Studies of AS/AEU in
cells with large treatment effects may indicate a method is work-
ing, but it does not establish that the method will be generally
applicable.[54] Given that many algorithms formulate AEU as an
“outlier detection problem”, optimizing the removal of noise, e.g.,
poorly performing probes prior to signal summarization may
also improve existingmethods. Thus, in general, AS/AEUmodel-
ing of short-read RNA-seq and modern array data is challenging
and often relies onmultiple strategies, including laborious visual
inspection of results.[54]

To illustrate the performance of splicing analysis using RNA-
seq versus the HTA array, consider the 2015 Science arti-
cle, where RNA-seq was used to profile multiple post-mortem
tissues.[144] This project (GTEx) reported 23–516 AEU events
across two-way comparisons[144] including 370 AEU events be-
tween adipose and muscle tissue. A major conclusion was that
tissue specificity was determined primarily by differences in
gene expression abundance rather than through differences in
AS/AEU. At the same time, using the HTA 2.0 array[54] we iden-
tified>1500 AEU events between adipose andmuscle (with some
independent validation using exon specific qPCR). The splicing
ratio statistic used by the GTEx project has high uncertainty at
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lower count thresholds[247] and we noted that the AEU events
they reported[144] were only among abundant genes and biased
for events related to cassette exons. More recently, the muscle
FUSION project studied AS/AEU using RNA-seq, reporting one
isoform relevant to metabolic status. This analysis used a simple
ratio method to detect AS/AEE and the event was not replicated
in a comparable array analysis.[2]

While there are several explanations for limited AEU detection
using short-read RNA-seq, including those mentioned above, Xu
et al. identified that, at a comparable sequencing depth, variabil-
ity in expression is high for features with fewer than 20 mapped
reads, which included ≈60% of the exons quantified. Evaluation
of ten commonly used tools for differential splicing analysis us-
ing RNA-seq, found minimal overlap in the number of genes de-
tected, ranging from 0 to more than 14 000, depending on the
method used.[248] This suggest that short-read RNA-seq has lim-
ited utility for large-scale discovery of AS/AEU, and there is no
evidence that it offers better resolution than modern arrays.[54]

Whilemodeling AS/AEUusing arrays providesmany candidates,
the data will be incomplete and direct long-read RNA profiling
technologies offer a clear advantage.[71,179,249] Whether the latter
offer reproducible quantification suitable for large-scale clinical
projects remains unknown. There are still opportunities to im-
prove available methods for studying AS/AEU using modern ar-
rays. For example, no method uses the exon-exon junction span-
ning probes while properly adjusting the FDR for gene length.

9. General Conclusions

Reductions in cost coupled with a number of deep-rooted mis-
conceptions led to 2nd generation short-read RNA-seq becom-
ing the method of choice for most bulk transcriptomics, replac-
ing the microarray. While efforts are being made to reduce costs
and provide greater throughput for RNA-seq these do not ad-
dress fundamental limitations (e.g., bias in the cDNA library or
the nature of count-based data). Indeed, some modification may
make matters worse. Fundamental characteristics of the RNA-
seq methodology, can be shown to compromise the validity of
downstream statistical analyses, where numerous biases rather
than biology drive significant results. Notably, cost-effective rou-
tine RNA-seq analyses, using reference databases, do not dis-
cover novel transcripts, nor many gene-splicing events. RNA-seq
also generates huge data files (packed with millions of estimated
counts of a few abundant genes), representing an incomplete
transcriptomic record of a clinical sample and significant long-
term storage costs. Equally we recognize that 3rd generation di-
rect RNA sequencing technologies are powerful tools for build-
ing transcriptome databases, studying allele specific transcrip-
tion and characterizing their post-transcriptional modifications.
These newer methods do not however appear suitable yet to gen-
erate cost-effective quantitative transcriptomes for large transla-
tionalmedicine projects. Studies contrasting the global transcrip-
tome and proteomics need to reflect on the relative count na-
ture of RNA-seq data, and better integrate the temporal nature
of transcription, translation, and proteostasis. Finally, many ge-
nomic databases use RNA-seq data to define the landscape of the
human transcriptome[144] and this confounds the literature with
inaccurate claims regarding the anatomy of gene expression.[250]

We strongly advise against using any RNA-seq reference, com-

monly linked within genomic browsers, as a view on whether
a gene is expressed or not in human tissue, particularly GTEx
(which is further confounded by disease, postmortem delay and
drug treatment). Together, we resist concluding that short-read
RNA-seq and arrays are “complementary technologies” and close
instead by stating that high-density modern arrays are a more ro-
bust and cost-effective option formany types of studies, especially
when aiming to profile long noncoding RNAs.
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