740 research outputs found

    Neurotransmitter profile of saccadic omnipause neurons in nucleus raphe interpositus

    Get PDF
    Saccadic omnipause neurons (OPNs) are essential for the generation of saccadic eye movements. In primates OPNs are located near the midline within the nucleus raphe interpositus (rip). In the present study we used several different neuroanatomical methods to investigate the transmitters associated with OPNs in the monkey. Immunolabeling for the calcium-binding protein parvalbumin was employed to mark OPNs in the monkey and define the homologous cell group in cat and human. The use of antibodies against GABA, glycine (GLY), glutamate (GLU), serotonin (5-HT), and tyrosine hydroxylase revealed that the somata of OPNs are GLY immunoreactive, but they are devoid of GABA and 5-HT immunostaining. In situ hybridization with the GAD67 mRNA probe confirmed the negative GABA immunostaining of OPNs. 3H-GLY was injected into a projection field of OPNs, the rostral interstitial nucleus of the medial longitudinal fascicle (riMLF)--the vertical saccadic burst neuron area. This resulted in selective retrograde labeling of the OPNs in rip, while no labeling was found in the superior colliculus, which sends an excitatory projection to the riMLF. The somata and dendrites of putative burst neurons in the riMLF were contacted by numerous GLY- immunoreactive terminals. The quantitative analysis of immunoreactive terminal-like structures contacting OPNs revealed a strong input from GLY- and GABA-positive terminals on somata and dendrites, whereas GLU- positive puncta were mainly confined to the dendrites. Very few 5-HT and catecholaminergic terminals contacted OPN somata. Our findings suggest that OPNs use GLY as a neurotransmitter, and they receive numerous contacts from GABAergic, glycinergic, and glutaminergic afferents, and significantly fewer from monoaminergic inputs.</jats:p

    Aesthetic preference for art emerges from a weighted integration over hierarchically structured visual features in the brain

    Get PDF
    It is an open question whether preferences for visual art can be lawfully predicted from the basic constituent elements of a visual image. Moreover, little is known about how such preferences are actually constructed in the brain. Here we developed and tested a computational framework to gain an understanding of how the human brain constructs aesthetic value. We show that it is possible to explain human preferences for a piece of art based on an analysis of features present in the image. This was achieved by analyzing the visual properties of drawings and photographs by multiple means, ranging from image statistics extracted by computer vision tools, subjective human ratings about attributes, to a deep convolutional neural network. Crucially, it is possible to predict subjective value ratings not only within but also across individuals, speaking to the possibility that much of the variance in human visual preference is shared across individuals. Neuroimaging data revealed that preference computations occur in the brain by means of a graded hierarchical representation of lower and higher level features in the visual system. These features are in turn integrated to compute an overall subjective preference in the parietal and prefrontal cortex. Our findings suggest that rather than being idiosyncratic, human preferences for art can be explained at least in part as a product of a systematic neural integration over underlying visual features of an image. This work not only advances our understanding of the brain-wide computations underlying value construction but also brings new mechanistic insights to the study of visual aesthetics and art appreciation

    Optimization of nanostructured permalloy electrodes for a lateral hybrid spin-valve structure

    Full text link
    Ferromagnetic electrodes of a lateral semiconductor-based spin-valve structure are designed to provide a maximum of spin-polarized injection current. A single-domain state in remanence is a prerequisite obtained by nanostructuring Permalloy thin film electrodes. Three regimes of aspect ratios mm are identified by room temperature magnetic force microscopy: (i) high-aspect ratios of m20m \ge 20 provide the favored remanent single-domain magnetization states, (ii) medium-aspect ratios m3m \sim 3 to m20m \sim 20 yield highly remanent states with closure domains and (iii) low-aspect ratios of m3m \le 3 lead to multi-domain structures. Lateral kinks, introduced to bridge the gap between micro- and macroscale, disturb the uniform magnetization of electrodes with high- and medium-aspect ratios. However, vertical flanks help to maintain a uniformly magnetized state at the ferromagnet-semiconcuctor contact by domain wall pinning.Comment: revised version, major structural changes, figures reorganized,6 pages, 8 figures, revte

    Developing Tools to Evaluate Spawning & Fertilization Dynamics of the Giant Sea Scallop — Phase II: Field Trials in Experimental Populations

    Get PDF
    Objective 1 — Sperm advection-diffusion model: Develop a two-dimensional spatial model to predict the concentration o f sperm and effective range of fertilization in a sperm plume at varying distances from a source population of spawning males under scenarios of synchronous and asynchronous spawning. Objective 2 — Fertilization assays in field populations: Conduct a time series of fertilization assays over experimental populations of scallops to (a) further develop the methodology to assess ambient sperm loads in scallop populations over the course of the spawning season, (b) compare model predictions about spatial patterns of sperm concentration and fertilization generated in Objective 1 to field observations on experimental populations, (c) determine the influence of differences in the sperm plume arising from two experimental populations spanning a ten-fold difference in male density, and (d) conduct laboratory flume experiments to evaluate potential biases introduced by Nitex egg baskets to estimates of absolute and relative rates of fertilization

    Different Early Post-Settlement Strategies Between American Lobsters Homarus Americanus and Rock Crabs Cancer Irroratus in the Gulf of Maine

    Get PDF
    The abundance of many invertebrates with planktonic larval stages can be determined shortly after they reach the benthos. In this study, we quantified patterns of abundance and habitat utilization of early benthic phases of the American lobster Homarus americanus and the rock crab Cancer irroratus. These 2 decapods are among the most common and abundant macroinvertebrates in coastal zones of the Gulf of Maine, with similar densities of larger individuals. Settlement and early postsettlement survival indicate that lobsters are highly substrate-specific early in life, settling predominantly in cobble beds. Crabs appear to be less selective, setting both in cobble and sand. Cumulative settlement of crabs, inferred from weekly censuses over the summer, was an order of magnitude greater than that of lobsters over the same time period. However, only crabs showed significant postsettlement losses. Although the identity of specific predators is unknown, predator exclusion experiments and placement of vacant uninhabited nursery habitat suggested that post-settlement mortality rather than emigration was responsible for these losses. The selective habitat-seeking behavior and lower post-settlement mortality of lobsters is consistent with their lower fecundity and later onset of reproductive maturity. The patterns observed for crabs, however, suggest a different strategy which is more in accordance with their higher fecundity and earlier onset of maturity. It is possible that lower fecundity but greater per-egg investment, along with strict habitat selection at settlement and lower post-settlement mortality, allows adult lobster populations to equal adult populations of crabs. This occurs despite crabs being more fecund and less habitat-selective settlers but sustaining higher postsettlement mortality

    Stability of Ferromagnetism in Hubbard models with degenerate single-particle ground states

    Full text link
    A Hubbard model with a N_d-fold degenerate single-particle ground state has ferromagnetic ground states if the number of electrons is less or equal to N_d. It is shown rigorously that the local stability of ferromagnetism in such a model implies global stability: The model has only ferromagnetic ground states, if there are no single spin-flip ground states. If the number of electrons is equal to N_d, it is well known that the ferromagnetic ground state is unique if and only if the single-particle density matrix is irreducible. We present a simplified proof for this result.Comment: accepted for publication in J. Phys.

    Strengthening the 4-H Essential Elements of Positive Youth Development at Camp

    Get PDF
    Summer camp programs provide distinct opportunities for positive youth development through caring relationships and opportunities to build skills. To examine the extent to which youths experience the 4-H Essential Elements through 4-H camp programs, we administered the National 4-H Camping Research Consortium\u27s Camp Context Questionnaire to youths (n = 776) across 20 camps. Results indicated some exposure to the Essential Elements. Although mean scores related to establishing relationships with caring adults were high, room for improvement existed in the areas of self-determination, belonging, and personal safety. The results enabled state and local staff to implement strategic decisions for future camp programs and may be of value to others managing 4-H camp programming
    corecore