5,094 research outputs found

    Models of Saturn's Interior Constructed with Accelerated Concentric Maclaurin Spheroid Method

    Get PDF
    The Cassini spacecraft's Grand Finale orbits provided a unique opportunity to probe Saturn's gravity field and interior structure. Doppler measurements yielded unexpectedly large values for the gravity harmonics J_6, J_8, and J_10 that cannot be matched with planetary interior models that assume uniform rotation. Instead we present a suite of models that assume the planet's interior rotates on cylinders, which allows us to match all the observed even gravity harmonics. For every interior model, the gravity field is calculated self-consistently with high precision using the Concentric Maclaurin Spheroid (CMS) method. We present an acceleration technique for this method, which drastically reduces the computational cost, allows us to efficiently optimize model parameters, map out allowed parameter regions with Monte Carlo sampling, and increases the precision of the calculated J_2n gravity harmonics to match the error bars of the observations, which would be difficult without acceleration. Based on our models, Saturn is predicted to have a dense central core of 15-18 Earth masses and an additional 1.5-5 Earth masses of heavy elements in the envelope. Finally, we vary the rotation period in the planet's deep interior and determine the resulting oblateness, which we compare with the value from radio occultation measurements by the Voyager spacecraft. We predict a rotation period of 10:33:34 h +- 55s, which is in agreement with recent estimates derived from ring seismology.Comment: 12 color figures, 5 tables, Astrophysical Journal, in press (2019

    The CRESST Dark Matter Search

    Full text link
    We present first competitive results on WIMP dark matter using the phonon-light-detection technique. A particularly strong limit for WIMPs with coherent scattering results from selecting a region of the phonon-light plane corresponding to tungsten recoils. The observed count rate in the neutron band is compatible with the rate expected from neutron background. CRESST is presently being upgraded with a 66 channel SQUID readout system, a neutron shield and a muon veto system. This results in a significant improvement in sensitivity.Comment: 6 pages, 3 figures, to be published in the proceedings of the 5th International Workshop on the Identification and Detection of Dark Matter IDM 2004, Edinburgh, Sept. 2004, World Scientifi

    Decreased depth distribution of Fucus vesiculosus (Phaeophyceae) in the Western Baltic: effects of light deficiency and epibionts on growth and photosynthesis

    Get PDF
    For many coastal areas of the world, a decrease in abundance and depth penetration of perennial macroalgae and seagrasses has been documented and attributed to eutrophication. A surplus of nutrients impairs perennial seaweeds in at least two ways: increased phytoplankton densities reduce the depth penetration of light and in addition filamentous seaweeds and microalgae growing epiphytically shade their perennial hosts. A reduction of depth limit and total abundance has also been observed for the brown seaweed Fucus vesiculosus at many sites in the Baltic Sea. However, in most cases the mechanistic reason for the loss of Fucus has been deduced from observations rather than from experimental evidence. Here, we present results of a two-factorial (water depth/light supply and epibionts) experiment that was run in the Kiel Fjord, western Baltic, from August to October 2005. Performance of F. vesiculosus was recorded by growth and chlorophyll measurements, PI-curves and in situ measurements of the photosynthetic activity as the relative rate of electron transport (rETR). rETR and growth decreased with water depth. Chlorophyll a concentrations increased with reduced light intensities, but this apparently could not compensate for the light deficiency. Epibionts enhanced the negative effect of reduced light conditions on growth. According to these findings we estimated the physiological depth limit of F. vesiculosus in the Kiel Fjord to lie between 4 and 6 m water depth

    Semiquantitative interpretation of anticardiolipin and antiβ2glycoprotein I antibodies measured with various analytical platforms: communication from the ISTH SSC subcommittee on Lupus Anticoagulant/Antiphospholipid antibodies

    Get PDF
    Background Antiβ2glycoprotein I (aβ2GPI) and anticardiolipin (aCL) IgG/IgM show differences in positive/negative agreement and titers between solid phase platforms. Method specific semiquantitative categorization of titers could improve and harmonize the interpretation across platforms. Aim To evaluate the traditionally 40/80 units thresholds used for aCL and aβ2GPI for categorization into moderate/high positivity with different analytical systems, and to compare with alternative thresholds. Material and methods aCL and aβ2GPI thresholds were calculated for two automated systems (chemiluminescent immunoassay (CLIA) and multiplex flow immunoassay (MFI)) by ROC-curve analysis on 1108 patient samples, including patients with and without APS, and confirmed on a second population (n=279). Alternatively, regression analysis on diluted standard material was applied to identify thresholds. Thresholds were compared to 40/80 threshold measured by an enzyme linked immunosorbent assay (ELISA). Additionally, likelihood ratios (LR) were calculated. Results Threshold levels of 40/80 units show poor agreement between ELISA and automated platforms for classification into low/moderate/high positivity, especially for aCL/aβ2GPI IgG. Agreement for semiquantitative interpretation of aPL IgG between ELISA and CLIA/MFI improves with alternative thresholds. LR for aPL IgG increase for thrombotic and obstetric APS based on 40/80 thresholds for ELISA and adapted thresholds for the other systems, but not for IgM. Conclusion Use of 40/80 units as medium/high thresholds is acceptable for aCL/aβ2GPI IgG ELISA, but not for CLIA and MFI. Alternative semiquantitative thresholds for non-ELISA platforms can be determined by a clinical approach or by using monoclonal antibodies. Semiquantitative reporting of aPL IgM has less impact on increasing probability for APS

    Finite population size effects in quasispecies models with single-peak fitness landscape

    Get PDF
    We consider finite population size effects for Crow-Kimura and Eigen quasispecies models with single-peak fitness landscape. We formulate accurately the iteration procedure for the finite population models, then derive the Hamilton-Jacobi equation (HJE) to describe the dynamic of the probability distribution. The steady-state solution of HJE gives the variance of the mean fitness. Our results are useful for understanding the population sizes of viruses in which the infinite population models can give reliable results for biological evolution problems

    Effects of epibiosis on consumer-prey interactions

    Get PDF
    In many benthic communities predators play a crucial role in the population dynamics of their prey. Surface characteristics of the prey are important for recognition and handling by the predator. Because the establishment of an epibiotic assemblage on the surface of a basibiont species creates a new interface between the epibiotized organism and its environment, we hypothesised that epibiosis should have an impact on consumer-prey interactions. In separate investigations, we assessed how epibionts on macroalgae affected the susceptibility of the latter to herbivory by the urchin Arbacia punctulata and how epibionts on the blue mussel Mytilus edulis affected its susceptibility to predation by the shore crab Carcinus maenas. Some epibionts strongly affected consumer feeding behavior. When epibionts were more attractive than their host, consumer pressure increased. When epibionts were less attractive than their host or when they were repellent, consumer pressure decreased. In systems that are controlled from the top-down, epibiosis can strongly influence community dynamics. For the Carcinus/Mytilus system that we studied, the insitu distribution of epibionts on mussels reflected the epibiosis-determined preferences of the predator. Both direct and indirect effects are involved in determining these epibiont-prey-consumer interactions

    Saturn's Interior After the Cassini Grand Finale

    Full text link
    We present a review of Saturn's interior structure and thermal evolution, with a particular focus on work in the past 5 years. Data from the Cassini mission, including a precise determination of the gravity field from the Grand Finale orbits, and the still ongoing identification of ring wave features in Saturn's C-ring tied to seismic modes in the planet, have led to dramatic advances in our understanding of Saturn's structure. Models that match the gravity field suggest that differential rotation, as seen in the visible atmosphere, extends down to at least a depth of 10,000 km (1/6th^{\rm th} the planet's radius). At greater depths, a variety of different investigations all now point to a deep Saturn rotation rate of 10 hours and 33 minutes. There is very compelling evidence for a central heavy element concentration (``core''), that in most recent models is 12-20 Earth masses. Ring seismology strongly suggests that the core is not entirely compact, but is dilute (mixed in with the overlying H/He), and has a substantial radial extent, perhaps out to around one-half of the planet's radius. A wide range of thermal evolution scenarios can match the planet's current luminosity, with progress on better quantifying the helium rain scenario hampered by Saturn's poorly known atmospheric helium abundance. We discuss the relevance of magnetic field data on understanding the planet's current interior structure. We point towards additional future work that combines seismology and gravity within a framework that includes differential rotation, and the utility of a Saturn entry probe.Comment: Invited review. Accepted for publication in "Saturn: The Grand Finale", K. H. Baines et al., eds., Cambridge University Press. All-new follow-up to previous 2016 (pre-Grand Finale) review chapter here: arXiv:1609.0632

    On the superconductivity in the system with preformed pairs

    Full text link
    We discuss the phenomenology of the superconductivity resulting from the bose condensation of the preformed pairs coexisting with unpaired fermions. We show that this transition is more mean field like than usual bose condensation, i.e. it is characterized by a relatively small value of the Ginzburg parameter. We consider the Hall effect in the vortex flow regime and in the fluctuational regime above TcT_c and show that in this situation it is much less than in the transition driven entirely by bose condesation but much larger than in a usual superconductivity. We analyse the available Hall data and conclude that this phenomenology describes reasonably well the data in the underdoped materials of YBaCuOYBaCuO family but is not an appropriate description of optimally doped materials or underdoped LaSrCuOLaSrCuO.Comment: Latex/Revtex file, 2 Postscript figures, 10 page
    corecore