6,163 research outputs found

    Kondo effect of Co adatoms on Ag monolayers on noble metal surfaces

    Full text link
    The Kondo temperature TKT_K of single Co adatoms on monolayers of Ag on Cu and Au(111) is determined using Scanning Tunneling Spectroscopy. TKT_K of Co on a single monolayer of Ag on either substrate is essentially the same as that of Co on a homogenous Ag(111) crystal. This gives strong evidence that the interaction of surface Kondo impurities with the substrate is very local in nature. By comparing TKT_K found for Co on Cu, Ag, and Au (111)-surfaces we show that the energy scale of the many-electron Kondo state is insensitive to the properties of surface states and to the energetic position of the projected bulk band edges.Comment: 4 pages, 3 figure

    Local pressure-induced metallization of a semiconducting carbon nanotube in a crossed junction

    Full text link
    The electronic and vibrational density of states of a semiconducting carbon nanotube in a crossed junction was investigated by elastic and inelastic scanning tunneling spectroscopy. The strong radial compression of the nanotube at the junction induces local metallization spatially confined to a few nm. The local electronic modifications are correlated with the observed changes in the radial breathing and G-band phonon modes, which react very sensitively to local mechanical deformation. In addition, the experiments reveal the crucial contribution of the image charges to the contact potential at nanotube-metal interfaces

    Quantum Coherence of Image-Potential States

    Full text link
    The quantum dynamics of the two-dimensional image-potential states in front of the Cu(100) surface is measured by scanning tunneling microscopy (STM) and spectroscopy (STS). The dispersion relation and the momentum resolved phase-relaxation time of the first image-potential state are determined from the quantum interference patterns in the local density of states (LDOS) at step edges. It is demonstrated that the tip-induced Stark shift does not affect the motion of the electrons parallel to the surface.Comment: Submitted to Phys. Rev. Lett., 4 pages, 4 figures; corrected typos, minor change

    Kondo temperature of magnetic impurities at surfaces

    Full text link
    Based on the experimental observation, that only the close vicinity of a magnetic impurity at metal surfaces determines its Kondo behaviour, we introduce a simple model which explains the Kondo temperatures observed for cobalt adatoms at the (111) and (100) surfaces of Cu, Ag, and Au. Excellent agreement between the model and scanning tunneling spectroscopy (STS) experiments is demonstrated. The Kondo temperature is shown to depend on the occupation of the d-level determined by the hybridization between adatom and substrate with a minimum around single occupancy.Comment: 4 pages, 2 figure

    A noncanonical PWI domain in the N-terminal helicase-associated region of the spliceosomal Brr2 protein

    Get PDF
    The spliceosomal RNA helicase Brr2 is required for the assembly of a catalytically active spliceosome on a messenger RNA precursor. Brr2 exhibits an unusual organization with tandem helicase units, each comprising dual RecA-like domains and a Sec63 homology unit, preceded by a more than 400-residue N-terminal helicase-associated region. Whereas recent crystal structures have provided insights into the molecular architecture and regulation of the Brr2 helicase region, little is known about the structural organization and function of its N-terminal part. Here, a near-atomic resolution crystal structure of a PWI-like domain that resides in the N-terminal region of Chaetomium thermophilum Brr2 is presented. CD spectroscopic studies suggested that this domain is conserved in the yeast and human Brr2 orthologues. Although canonical PWI domains act as low-specificity nucleic acid-binding domains, no significant affinity of the unusual PWI domain of Brr2 for a broad spectrum of DNAs and RNAs was detected in band-shift assays. Consistently, the C. thermophilum Brr2 PWI-like domain, in the conformation seen in the present crystal structure, lacks an expanded positively charged surface patch as observed in at least one canonical, nucleic acid-binding PWI domain. Instead, in a comprehensive yeast two-hybrid screen against human spliceosomal proteins, fragments of the N-terminal region of human Brr2 were found to interact with several other spliceosomal proteins. At least one of these interactions, with the Prp19 complex protein SPF27, depended on the presence of the PWI-like domain. The results suggest that the N-terminal region of Brr2 serves as a versatile protein-protein interaction platform in the spliceosome and that some interactions require or are reinforced by the PWI-like domain

    Continuous Strategy Replicator Dynamics for Multi--Agent Learning

    Full text link
    The problem of multi-agent learning and adaptation has attracted a great deal of attention in recent years. It has been suggested that the dynamics of multi agent learning can be studied using replicator equations from population biology. Most existing studies so far have been limited to discrete strategy spaces with a small number of available actions. In many cases, however, the choices available to agents are better characterized by continuous spectra. This paper suggests a generalization of the replicator framework that allows to study the adaptive dynamics of Q-learning agents with continuous strategy spaces. Instead of probability vectors, agents strategies are now characterized by probability measures over continuous variables. As a result, the ordinary differential equations for the discrete case are replaced by a system of coupled integral--differential replicator equations that describe the mutual evolution of individual agent strategies. We derive a set of functional equations describing the steady state of the replicator dynamics, examine their solutions for several two-player games, and confirm our analytical results using simulations.Comment: 12 pages, 15 figures, accepted for publication in JAAMA

    Horn Fly Control and Growth Implants are Effective Strategies for Heifers Grazing Flint Hills Pasture

    Get PDF
    Horn flies (Haematobia irritans (L.)) are considered the most important external parasite that negatively affects pasture-based beef systems with losses estimated to exceed $1 billion annually to the U.S. beef industry. Control strategies have relied heavily on insecticide applications to control horn flies and are implemented when the economic threshold of 200 flies/animal have been exceeded. When horn fly populations are maintained below 200 flies/animal by treating them with insecticides then the level of stress annoyance behaviors such as leg stomping, head throwing, and skin twitching decreases while grazing increases. While most stocker operators utilize some type of fly control these are rarely used as a single pharmaceutical technology to aid in performance of the animals. Additional pharmaceutical technologies are utilized in combination of others, with the use of de-wormers and implants showing the largest impact with performance of stockers. The objective of this study was to compare a commercial injectable insecticide, LongRange, to an insecticidal ear tag for horn fly control and determine the impact of weight performance on stockers when fly control technologies were used in combination with implants versus no implants
    • …
    corecore