5 research outputs found

    Can light passenger vehicle trajectory better explain the injury severity in crashes with bicycles than crash type?

    Get PDF
    Movements of cyclists and m.otor vehicles at intersections involve a wide variety of potential conflicting interactions. In Australia, the high numbers of motor vehicles, particularly light passenger vehicles, mixed with cyclists results in many bicycle-light passengervehicle (LPV) crashes (3,135 crashes during 2002-2014). About 68% of cyclist deaths at Australian intersections in 2016 were due to crashes between bicycles and LPVs (DITRLDG, 2016). The high number ofLPV crashes among fatalities among cyclists is an increasing safety concem. When an LPV collides with a cyclist, the resulting impact forces in.tluence the probability of cyclist injury severity outcom.e. Therefore, the goa1 at intersections should be to understand whether and which particular crash patterns are more injurious, in order to better inform approaches to reduce the impact forces to levels that do not result in severe injury outcomes. To examine how crash pattem (or mechanism) influences the injury severity of cyclists in bicycle-motor vehicle crashes at intersections, researchers typically describe the crash mechanism in terms of crash types, such as angle crashes, head--on crashes, rear-end crashes, and sideswipe crashes (e.g., Kim et al., 2007; Pai, 2011 ). While crash types explain crash mechanisms to some extent, this study hypothesiz.es that the trajectories of the crash involved vehicles may provide additional information because they better capture the movements of the vehicles prior to collision. Furthermore, it is argued that injury pattem might be in.tluenced by vehicle travel direction and manoeuvre (Isaksson-Hellman and Wemeke, 2017). For example, when a car is moving straight ahead it is likely to have a higher speed than when it is turning, and if cyclists are struck at a higher impact speed, they tend to sustain more severe injury (Badea-Romero and Lenard, 2013). While many studies have evaluated the association between cyclist injwy severity and crash types, the factors that might influence cyclist injury severity related to trajectory types (vehicle movement and travel direction) have not yet been thoroughly investigated. This study aims to examine the factors associated with cyclists' injury severity for 'trajectory types• compared with the typically used 'crash types' at intersections

    Towards an understanding of the factors associated with severe injuries to cyclists in crashes with motor vehicles

    No full text
    This thesis aimed to develop statistical models to overcome limitations in police-reported data to better understand the factors contributing to severe injuries in bicycle motor-vehicle crashes. In low-cycling countries such as Australia, collisions with motor vehicles are the major causes of severe injuries to cyclists and fear of collisions prevents many people from taking up cycling. The empirical results obtained from the models provide valuable insights to assist transport and enforcement agencies to improve cyclist safety

    Can light passenger vehicle trajectory better explain the injury severity in crashes with bicycles than crash type?

    No full text
    Movements of cyclists and m.otor vehicles at intersections involve a wide variety of potential conflicting interactions. In Australia, the high numbers of motor vehicles, particularly light passenger vehicles, mixed with cyclists results in many bicycle-light passengervehicle (LPV) crashes (3,135 crashes during 2002-2014). About 68% of cyclist deaths at Australian intersections in 2016 were due to crashes between bicycles and LPVs (DITRLDG, 2016). The high number ofLPV crashes among fatalities among cyclists is an increasing safety concem. When an LPV collides with a cyclist, the resulting impact forces in.tluence the probability of cyclist injury severity outcom.e. Therefore, the goa1 at intersections should be to understand whether and which particular crash patterns are more injurious, in order to better inform approaches to reduce the impact forces to levels that do not result in severe injury outcomes. To examine how crash pattem (or mechanism) influences the injury severity of cyclists in bicycle-motor vehicle crashes at intersections, researchers typically describe the crash mechanism in terms of crash types, such as angle crashes, head--on crashes, rear-end crashes, and sideswipe crashes (e.g., Kim et al., 2007; Pai, 2011 ). While crash types explain crash mechanisms to some extent, this study hypothesiz.es that the trajectories of the crash involved vehicles may provide additional information because they better capture the movements of the vehicles prior to collision. Furthermore, it is argued that injury pattem might be in.tluenced by vehicle travel direction and manoeuvre (Isaksson-Hellman and Wemeke, 2017). For example, when a car is moving straight ahead it is likely to have a higher speed than when it is turning, and if cyclists are struck at a higher impact speed, they tend to sustain more severe injury (Badea-Romero and Lenard, 2013). While many studies have evaluated the association between cyclist injwy severity and crash types, the factors that might influence cyclist injury severity related to trajectory types (vehicle movement and travel direction) have not yet been thoroughly investigated. This study aims to examine the factors associated with cyclists' injury severity for 'trajectory types• compared with the typically used 'crash types' at intersections

    Can light passenger vehicle trajectory better explain the injury severity in crashes with bicycles than crash type?

    No full text
    Movements of cyclists and m.otor vehicles at intersections involve a wide variety of potential conflicting interactions. In Australia, the high numbers of motor vehicles, particularly light passenger vehicles, mixed with cyclists results in many bicycle-light passengervehicle (LPV) crashes (3,135 crashes during 2002-2014). About 68% of cyclist deaths at Australian intersections in 2016 were due to crashes between bicycles and LPVs (DITRLDG, 2016). The high number ofLPV crashes among fatalities among cyclists is an increasing safety concem. When an LPV collides with a cyclist, the resulting impact forces in.tluence the probability of cyclist injury severity outcom.e. Therefore, the goa1 at intersections should be to understand whether and which particular crash patterns are more injurious, in order to better inform approaches to reduce the impact forces to levels that do not result in severe injury outcomes. To examine how crash pattem (or mechanism) influences the injury severity of cyclists in bicycle-motor vehicle crashes at intersections, researchers typically describe the crash mechanism in terms of crash types, such as angle crashes, head--on crashes, rear-end crashes, and sideswipe crashes (e.g., Kim et al., 2007; Pai, 2011 ). While crash types explain crash mechanisms to some extent, this study hypothesiz.es that the trajectories of the crash involved vehicles may provide additional information because they better capture the movements of the vehicles prior to collision. Furthermore, it is argued that injury pattem might be in.tluenced by vehicle travel direction and manoeuvre (Isaksson-Hellman and Wemeke, 2017). For example, when a car is moving straight ahead it is likely to have a higher speed than when it is turning, and if cyclists are struck at a higher impact speed, they tend to sustain more severe injury (Badea-Romero and Lenard, 2013). While many studies have evaluated the association between cyclist injwy severity and crash types, the factors that might influence cyclist injury severity related to trajectory types (vehicle movement and travel direction) have not yet been thoroughly investigated. This study aims to examine the factors associated with cyclists' injury severity for 'trajectory types• compared with the typically used 'crash types' at intersections
    corecore