238 research outputs found

    A numerical method for rapid estimation of drawbead restraining force based on non-linear, anisotropic constitutive equations

    Get PDF
    AbstractNumerical procedures to predict drawbead restraining forces (DBRF) were developed based on the semi-analytical (non-finite-element) hybrid membrane/bending method. The section forces were derived by equating the work to pull sheet material through the drawbead to the work required to bend and unbend the sheet along with frictional forces on drawbead radii. As a semi-analytical method, the new approach was especially useful to analyze the effects of various constitutive parameters with less computational cost. The present model could accommodate general non-quadratic anisotropic yield function and non-linear anisotropic hardening under the plane strain condition. Several numerical sensitivity analyses for examining the effects of process parameters and material properties including the Bauschinger effect and the shape of yield surface on DBRF were presented. Finally, the DBRFs of SPCC steel sheet passing a single circular drawbead were predicted and compared with the measurements

    Kinetic Inflation in Stringy and Other Cosmologies

    Get PDF
    An inflationary epoch driven by the kinetic energy density in a dynamical Planck mass is studied. In the conformally related Einstein frame it is easiest to see the demands of successful inflation cannot be satisfied by kinetic inflation alone. Viewed in the original Jordan-Brans-Dicke frame, the obstacle is manifest as a kind of graceful exit problem and/or a kind of flatness problem. These arguments indicate the weakness of only the simplest formulation. {}From them can be gleaned directions toward successful kinetic inflation.Comment: 26 pages, LaTeX, CITA-94-2

    Gravity-Driven Acceleration of the Cosmic Expansion

    Get PDF
    It is shown here that a dynamical Planck mass can drive the scale factor of the universe to accelerate. The negative pressure which drives the cosmic acceleration is identified with the unusual kinetic energy density of the Planck field. No potential nor cosmological constant is required. This suggests a purely gravity driven, kinetic inflation. Although the possibility is not ruled out, the burst of acceleration is often too weak to address the initial condition problems of cosmology. To illustrate the kinetic acceleration, three different cosmologies are presented. One such example, that of a bouncing universe, demonstrates the additional feature of being nonsingular. The acceleration is also considered in the conformally related Einstein frame in which the Planck mass is constant.Comment: 23 pages, LaTex, figures available upon request, (revisions include added references and comment on inflation) CITA-94-1

    WMAP constraints on scalar-tensor cosmology and the variation of the gravitational constant

    Full text link
    We present observational constraints on a scalar-tensor gravity theory by χ2\chi^2 test for CMB anisotropy spectrum. We compare the WMAP temperature power spectrum with the harmonic attractor model, in which the scalar field has its harmonic effective potential with curvature β\beta in the Einstein conformal frame and the theory relaxes toward Einstein gravity with time. We found that the present value of the scalar coupling, i.e. the present level of deviation from Einstein gravity (α02)(\alpha_0^2), is bounded to be smaller than 5×1047β5\times 10^{-4-7\beta} (2σ2\sigma), and 1027β10^{-2-7\beta} (4σ4\sigma) for 0<β<0.450< \beta<0.45. This constraint is much stronger than the bound from the solar system experiments for large β\beta models, i.e., β>0.2\beta> 0.2 and 0.3 in 2σ2\sigma and 4σ4\sigma limits, respectively. Furthermore, within the framework of this model, the variation of the gravitational constant at the recombination epoch is constrained as G(z=zrec)G0/G0<0.05(2σ)|G(z=z_{rec})-G_0|/G_0 < 0.05(2\sigma), and 0.23(4σ)0.23(4\sigma).Comment: 7 page

    Gravitational radiation from a particle in circular orbit around a black hole. V. Black-hole absorption and tail corrections

    Get PDF
    A particle of mass μ\mu moves on a circular orbit of a nonrotating black hole of mass MM. Under the restrictions μ/M1\mu/M \ll 1 and v1v \ll 1, where vv is the orbital velocity, we consider the gravitational waves emitted by such a binary system. We calculate E˙\dot{E}, the rate at which the gravitational waves remove energy from the system. The total energy loss is given by E˙=E˙+E˙H\dot{E} = \dot{E}^\infty + \dot{E}^H, where E˙\dot{E}^\infty denotes that part of the gravitational-wave energy which is carried off to infinity, while E˙H\dot{E}^H denotes the part which is absorbed by the black hole. We show that the black-hole absorption is a small effect: E˙H/E˙v8\dot{E}^H/\dot{E} \simeq v^8. We also compare the wave generation formalism which derives from perturbation theory to the post-Newtonian formalism of Blanchet and Damour. Among other things we consider the corrections to the asymptotic gravitational-wave field which are due to wave-propagation (tail) effects.Comment: ReVTeX, 17 page

    Observational Consequences of Evolution of Primordial Fluctuations in Scalar-Tensor Cosmology

    Get PDF
    Evolution of primordial fluctuations in a Brans-Dicke type scalar-tensor gravity theory is comprehensively investigated. The harmonic attractor model, in which the scalar field has its harmonic effective potential in the Einstein conformal frame and the theory relaxes toward Einstein gravity with time, is considered. The evolution of adiabatic initial perturbations in flat SCDM models is examined from the radiation-dominated epoch up to the present. We discuss how the scalar-tensor gravity affects the evolution of metric and matter perturbations, mainly focusing on the observational consequences, i.e., the matter power spectrum and the power spectrum of cosmic microwave background temperature. We find that the early time deviation is characterized only by the large static gravitational constant while the late time behavior is qualitatively different from that in Einstein gravity because the time variation of the gravitational constant and its fluctuation have non-negligible effects. The attracting scalar-tensor gravity affects only small scale modes due to its attracting nature, the degree of which is far beyond the post-Newtonian deviation at the present epoch.Comment: 18 page

    Constraints from Inflation on Scalar-Tensor Gravity Theories

    Full text link
    We show how observations of the perturbation spectra produced during inflation may be used to constrain the parameters of general scalar-tensor theories of gravity, which include both an inflaton and dilaton field. An interesting feature of these models is the possibility that the curvature perturbations on super-horizon scales may not be constant due to non-adiabatic perturbations of the two fields. Within a given model, the tilt and relative amplitude of the scalar and tensor perturbation spectra gives constraints on the parameters of the gravity theory, which may be comparable with those from primordial nucleosynthesis and post-Newtonian experiments.Comment: LaTeX (with RevTex) 19 pages, 8 uuencoded figures appended, also available on WWW via http://star.maps.susx.ac.uk/index.htm

    On the stability of scalar-vacuum space-times

    Full text link
    We study the stability of static, spherically symmetric solutions to the Einstein equations with a scalar field as the source. We describe a general methodology of studying small radial perturbations of scalar-vacuum configurations with arbitrary potentials V(\phi), and in particular space-times with throats (including wormholes), which are possible if the scalar is phantom. At such a throat, the effective potential for perturbations V_eff has a positive pole (a potential wall) that prevents a complete perturbation analysis. We show that, generically, (i) V_eff has precisely the form required for regularization by the known S-deformation method, and (ii) a solution with the regularized potential leads to regular scalar field and metric perturbations of the initial configuration. The well-known conformal mappings make these results also applicable to scalar-tensor and f(R) theories of gravity. As a particular example, we prove the instability of all static solutions with both normal and phantom scalars and V(\phi) = 0 under spherical perturbations. We thus confirm the previous results on the unstable nature of anti-Fisher wormholes and Fisher's singular solution and prove the instability of other branches of these solutions including the anti-Fisher "cold black holes".Comment: 18 pages, 5 figures. A few comments and references added. Final version accepted at EPJ
    corecore