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Abstract

Numerical procedures to predict drawbead restraining forces (DBRF) were developed based on the semi-analytical
(non-finite-element) hybrid membrane/bending method. The section forces were derived by equating the work to pull sheet
material through the drawbead to the work required to bend and unbend the sheet along with frictional forces on draw-
bead radii. As a semi-analytical method, the new approach was especially useful to analyze the effects of various consti-
tutive parameters with less computational cost. The present model could accommodate general non-quadratic
anisotropic yield function and non-linear anisotropic hardening under the plane strain condition. Several numerical sen-
sitivity analyses for examining the effects of process parameters and material properties including the Bauschinger effect
and the shape of yield surface on DBRF were presented. Finally, the DBRFs of SPCC steel sheet passing a single circular
drawbead were predicted and compared with the measurements.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In sheet metal stamping process, the drawbeads are frequently utilized to restrain the sheet metal from flow-
ing too freely and to control the amount of draw-in into die cavity. In order to increase the prediction capa-
bility of drawbead restraining force (DBRF) in an accurate and effective manner, lots of efforts have been
made during several decades. For example, Nine (1978, 1982) studied the effects of various stamping param-
eters on DBRF and proposed a DBRF and bead-exit prestrain at the upper and lower skins of the sheet when
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a circular drawbead is employed in a binder-holding process. Wang (1982) presented a mathematical model
for circular drawbead considering bending, sliding with friction and unbending of sheet materials. Levy
(1983) added the anisotropy and strain rate dependence of sheet materials in the old models. The most fre-
quently utilized drawbead model up to now was derived by Stoughton (1988) based on the equivalence of
work required to pull the sheet through the drawbead to the work required to bend and straighten the sheet
and overcome the frictional forces in sliding over the bead radii. This model, to provide finite-element mod-
eling with accurate estimate of the DBRF, thoroughly investigated the effects of drawbead depth, strain rate,
bending on the DBRF and binder hold-down force.

Continuous studies on the drawbeads have been emerged especially with the rapid progress of computa-
tional methods including finite-element method. Wang and Shah (1991) evaluated the effects of drawbead
dimensions and friction coefficients. Demeri (1993) assessed the influence of material properties, drawbead
penetration, and lubricants on the sheet flow. Direct simulations using finite-element analysis were performed
to predict DBRF and it was reported that a two-dimensional finite-element simulation was able to provide an
accurate enough prediction (Sunaga et al., 1996). Cao and Boyce (1993) showed that the restraining force
reaches its steady state when a part of the sheet is pulled entirely through the drawbead with their finite-ele-
ment simulations. More recently, Keum et al. (2001) proposed expert drawbead model which provides the
drawing characteristics of the drawbead used in the finite-element analysis of sheet metal forming process
to overcome the limitations of previous equivalent drawbead model positioned in the direction of normal
to the sheet movement.

Although the previous drawbead models showed reasonable prediction capabilities for the DBRF, they still
have some limitations. For example, Stoughton’s early model (1988) used simplified constitutive laws such as
symmetrical properties on the tension and compression and normal anisotropic yield condition to obtain ana-
lytical forms of solutions for the DBRF. Also, the material is assumed to be work-hardened to a strain pro-
portional to the average strain through the thickness in the simplified analytical model. Another theoretical
model (Chen and Tszeng, 1998) to calculate the restraining force produced by the drawbead also made sim-
plifying assumptions on the material behavior. Here, they assumed that the material is isotropic rigid–plastic
and the Bauschinger effect during the cyclic bending and unbending process was neglected. However, when the
material elements undergo non-monotonous deformations, the simple hardening law such as isotropic hard-
ening might not be so effective, even though deformations are approximately proportional. During the reverse
loading, material elements usually demonstrate the Bauschinger effect, which is related to the translation of the
yield stress surface. Assuming the initial yield stress surface to translate in the stress field without changing its
shape and size during plastic deformation is another way to simplify the evolution of the yield stress surface:
kinematic hardening proposed by Prager (1956) and Ziegler (1959). In order to describe the expansion and
translation of the yield stress surface during plastic deformation, the combination types of the isotropic
and kinematic hardening have been also commonly used (Chaboche, 1986; Chung et al., 2005; Geng and Wag-
oner, 2002). For example, Chun et al. (2002) compared the springback of sheet metals passing draw bead for
various material models and concluded that the Bauschinger effect should be properly modeled to give good
prediction capability. Besides the hardening law, the yield function which is essential to describe accurate
anisotropic behavior of sheet materials should be properly utilized. Recent studies on the non-quadratic aniso-
tropic yield function are well presented for the necessity of more advanced yield surfaces especially for the
non-ferrous materials.

Although finite-element method with higher order element such as 3D shell element has been successfully
used to predict DBRF with great accuracy, it usually takes much time and cost in the design stage. As an alter-
nate method to save computational expense with reasonable accuracy, a numerical procedure based on the
semi-analytical hybrid membrane/bending method which superposes bending effect onto membrane solution
has been developed and utilized. For example, similar numerical methods to reduce the computational cost for
the springback of sheet metal forming have been suggested in the previous works (Lee et al., 2007; Yoon et al.,
2002). As a non-finite-element approaches, they are especially useful to analyze the effects of various consti-
tutive parameters without spending much CPU time, while reasonable range of accuracy.

Due to the simple geometries of drawbeads adopted in sheet metal forming simulation, the semi-analytical
numerical method is applied in the present paper. The section forces are derived by the energy equivalence
suggested by Stoughton. The sensitivity (parametric) tests are presented for the process parameters and mate-
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rial properties. In terms of process parameters, the effects of friction by varying Coulomb friction coefficient
and drawbead depth on the DBRF are investigated. In terms of material properties, three different hardening
models including (pure) isotropic, (pure) kinematic and non-linear isotropic–kinematic hardening based on
Chaboche model and shape of yield function are chosen for the parametric studies. As for the yield function,
the Yld2000-2d originally proposed by Barlat et al. (2003) is used to represent the general shape of yield cri-
teria for different structure of metals. Besides the parametric studies, the predicted DBRFs on SPCC steel are
compared with measurements for the single circular drawbead.

2. Theory

In the present numerical scheme, the solutions of bending and unbending are superposed onto those of
membrane: hybrid method. Under this scheme, the tangential strain is the linear sum of symmetrical bending
strain and uniform stretching strain through the thickness. The drawbead adopted in the present paper is cir-
cular shape and restraining forces for the membrane solution can be derived in a straight manner without the
aid of finite-element calculation unlikely as done in the previous works (Pourboghrat and Chu, 1995; Pour-
boghrat et al., 1998). As for the constitutive behavior of materials, the combined non-linear isotropic–kine-
matic hardening is applied (Chung et al., 2005). Therefore, the numerical scheme is inevitably needed to
calculate solutions, which satisfy the equilibrium condition at all material points.

2.1. Kinematics

In the simulation of the drawbead test shown in Fig. 1, the tensile force distribution is determined in terms
of the material properties, the drawbead geometry and the friction. Then, for every time increment, the length
of the central line in each element is determined such that the resulting cross-sectional tensile force satisfies the
equilibrium force distribution along the sample.

The tangential strain distribution due to the bending with the applied tension is calculated by sectioning the
thickness into N equal-sized layers for each element discretized along the sheet material having an initial area
A0 (Lee et al., 2007). Tangential strains are calculated under the kinematic assumption that the plane section
remains plane called as the Kirchoff–Love theory after bending and unbending with tension. This assumption
is equivalent to the negligible through-the-thickness shear strains and was validated by the earlier work by
Choudhry and Lee (1994). In Fig. 2, the current thickness of the ‘th layer is calculated by applying following
recursive equations from the middle layer under the incompressibility assumption:
Fig. 1. Section view of a single circular drawbead with geometrical parameters.



Fig. 2. Definition of N-layers through the thickness.
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Dz‘�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R‘ þ 2

R
S

A0

N

r
� R‘ ð1Þ
for the layers above the center line and
Dz‘ ¼ R‘ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R‘ � 2

R
S

A0

N

r
ð2Þ
for the layers below the center line. Here, R ¼ 1
j ; j is curvature

� �
and S are the current radius of curvature and

length of the centerline, respectively. Eqs. (1) and (2) correspond to the positive bending in which the outer
fiber in Fig. 2 is stretched, while inner fiber is compressed. For the negative bending Eq. (1) holds for Dz‘�1

above the central line and Eq. (2) holds for Dz‘ below the central line. Note that radius of curvature is obtained
considering the position of the element along the tool geometry and therefore, R = Rd + t/2 in the current
drawbead problem shown in Fig. 1.

The discrete tangential strain increment of each layer is calculated by considering the current length and
plane strain condition
Deps;‘ ¼ ‘n
S‘

0S‘

� �
ð3Þ
where 0Sl is the length of the ‘th layer at the previous time step and S‘ = (1 + jz‘) S is its current length.
Applying the constitutive equations described in the later section and Eqs. (1) and (2), the tangential section

force is calculated as following.
T ¼
XN

‘¼1

hrðz‘Þi � Dz‘ � W ð4Þ
where W is the width of the thin sheet and hrðz‘Þi ¼ rðz‘Þþrðz‘þ1Þ
2

is averaged stress between two neighboring seg-
ments. Note that the resultant force is determined by the current radius of curvature R and length of the cen-
terline S.

2.2. Distribution of forces along the drawbead

With a sectional geometry of circular drawbead and a finally formed sheet shown in Fig. 1, the drawbead
restraining force (DBRF) is derived by equating the work required to pull the sheet through the drawbead to
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the work required to bend and straighten the sheet and to overcome the frictional forces in sliding over the
cylindrical drawbead radius as done by the previous works Stoughton (1988) and Keum et al. (2001).

First, the angle of drawbead contact between the sheet and drawbead edge radius is given by considering
the geometry of circular drawbead.
h ¼ tan�1 q
ðð1� pÞ2 þ pð2� pÞð1� q2ÞÞ1=2 � 1þ p

ð1� q2Þ

 !
ð5Þ
where p ¼ d
ð2RdþtÞ is penetration with drawbead depth d, and q ¼ ð2RdþtÞ

ð2RdþgÞ is the fit of drawbead with drawbead
gap g.

As the sheet material is flowing from region R1 to region R7, the restraining force is accumulated by bend-
ing and friction. The force at region R1 is increased by the blank holder force and friction between sheet and
blank holder. When the sheet material arrives at the entrance of region R2, the material experiences bending
and the additional bending force is accumulated. Therefore, the material element with length 0S under the
blank holder force TBHF takes up a new central line length S as soon as it enters region R2 under the tension
and bending moment. Since R (by the tool radius and current sheet thickness) and TBHF are prescribed, the
new S is determined from Eq. (4) along with the stress distribution after extension and bending. Therefore, the
plastic work increment rate associated with the material deformation becomes (Lee et al., 2007)
dW
dt
¼

ZZ
ðr � deÞdV

����
under tension T BHF and bending

�
ZZ
ðr � deÞdV

����
under tension T BHF

" #
� v

0S

� 	
ð6Þ
where v is the velocity of material movement S0=v and is the time duration of the movement. The increment of
the tensile force DT2,B at the entrance of region R2 is obtained by equating Eq. (6) with the work increment
rate, DT2,B � v by external forces applied on the strip. Therefore, DT2,B is approximated as
DT 2;B ¼
ZZ
ðr � deÞdV

����
under tension T BHF and bending

�
ZZ
ðr � deÞdV

����
under tension T BHF

" #
� W ð7Þ
During the sliding on the tool surface in the region R2, the force is increased by the resistance by the friction
between sheet material and tool surface. Here, the sheet material contacting with the tool is equally divided
into n subsections. The force due to the friction at the kth section along the region R2, T k

2 is
T k
2 ¼ ðT BHF þ DT 2;BÞ � expfl � ðk � 1Þ � Dhg; k ¼ 1; . . . ; nþ 1 ð8Þ
where l and Dh are the friction coefficient and the incremental angle the sheet slides on the drawbead surface,
respectively.

In region R3, the restraining force instantaneously increases at the entrance of the region R3 to overcome
the resistance associated with the complete unbending of the material. Therefore, as similarly done for T2,B,
DT 3;UB ¼
ZZ
ðr � deÞdV

����
under tension T nþ1

2

�
ZZ
ðr � deÞdV

�����
under tension T nþ1

2
and bending

2
4

3
5 � W ð9Þ
and
T 3 ¼ T nþ1
2 þ DT 3;UB ð10Þ
The increase of the restraining force is repeated as the sheet material travels along the drawbead surface and
the restraining forces for other regions can be obtained by the similar procedure described above.

As proposed in the previous works by Stoughton (1988) and Keum et al. (2001), the elastic force due to the
initial elastic displacement (d) during the die closing is added at the first and last points of contact of the center
drawbead to the forces due to the bending and the friction. The elastic force (Fe) is calculated by applying the
theory of elastic beam bending (from the solution of simply supported beam with deflection d),
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F e ¼
2Ewdt3

0

ð2Rd þ gÞ ð11Þ
where d ¼ min d; 2ð2Rd þ t0Þ RdrY

t0E

� 	
, E is Young’s modulus, t0 is initial sheet thickness, and rY is yield stress of

the sheet.
2.3. Constitutive equations

Under the plane strain assumption for a thin shell, the strain components have the following relationship by
the additive decomposition,
de2 ¼ dee
2 þ dep

2 ¼ 0 ð12Þ
where superscripts e and p represent elastic and plastic components, respectively. The subscript 2 shows
the component of strain along which the strain is constrained. When the plane stress condition is further
imposed for a thin sheet (that is, the normal compressive stresses are neglected), the stress state is gener-
ally not proportional under the elasto-plastic formulation, as schematically shown in Fig. 3(a). As a way
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(a) Stress state of a thin sheet in the plane-stress stress field under the plane strain deformation in elasto-plasticity and (b) rapid
pment of the proportional stress state during the initial plastic deformation (Lee et al., 2007).
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to achieve the proportionality in loading for the simple analysis here, the loading in Fig. 3(a) was approx-
imated to that in Fig. 3(b): within the yield surface, the stress is proportional under the condition,
de2 ¼ dee

2 ¼ 0, and as soon as the stress reaches the yield surface, the stress is proportional under the con-
dition, dep

2 ¼ 0.
By the linear elasticity,
drps ¼ Epsðdeps � dep
psÞ ð13Þ
where Eps ¼ E
1�v2. Here, the ‘ps’ means the components of the plane strain deformation, while E and v are

Young’s modulus and Poisson ratio of elasticity, respectively. By applying the modified plastic work equiva-
lence principle for the isotropic–kinematic hardening law (Chung et al., 2005),
�risod�e ¼ jrps � apsj � jdep
psj ð14Þ
where the upper bar is used for equivalent values and subscript ‘iso’ means the isotropic hardening (therefore,
�riso represents the current size of the expanding yield surface), while aps is the back stress which represents the
translation of the initial yield surface. When the yield function is specified, the ratio b between |rps � aps| and
�riso is determined by calculating the stress point on the yield surface, which satisfies the plane strain condition
ðdep

2 ¼ 0Þ. Therefore, Eq. (14) leads to
jrps � apsj ¼ b�riso; jdep
psj ¼

1

b
d�e ð15Þ
For the evolution of the back stress, the combination type isotropic–kinematic hardening law based on the
Chaboche model (Chaboche, 1986) under the plane strain condition is adopted in the paper:
daps ¼ C1jdep
psj

b2ðrps � apsÞ
jrps � apsj

� C2apsbjdep
psj ð16Þ
where C1 and C2 are material parameters measured at the reference state which is the uni-axial tension state in
this work.

The linear decomposition of the total hardening into isotropic and kinematic part can be assumed as
following:
�r ¼ �riso þ �rkine ¼ f�r0 þ nqð1� e�b�eÞg þ ð1� nÞqð1� e�b�eÞ ð17Þ

where the material parameter n is used as a ratio between the size change of yield surface by isotropic hard-
ening and translation of yield surface by kinematic hardening. Therefore, the above equation efficiently can
represent pure isotropic (n = 1), combined isotropic–kinematic hardening (0 < n < 1), and pure kinematic
hardening (n = 1). Note that n is generally a function of �e.

For the evolution of back stress, the Chaboche type non-linear kinematic hardening rule becomes, for the
uni-axial tensile case,
da
dep
¼ C1 � C2a ð18Þ
Integrating Eq. (18) and comparing it with the kinematic part of hardening in Eq. (17) gives,
C1 ¼ b and C1 ¼ ð1� nÞqb ð19Þ

Since the parameter n determines the early re-yielding when the loading direction is reversed, this parameter is
equivalent to the Bauschinger ratio.

The hardening parameters �risoð�eÞ for isotropic hardening and C1 and C2 for the kinematic hardening are
characterized from the continuous tension–compression (or compression–tension) uni-axial tests with several
pre-strains. From the measured data, initially the isotropic hardening data is separated from the total hard-
ening data. Then, the two kinematic hardening parameters which are assumed to be constants in this work are
obtained by the fitting the equation �a ¼ C1

C2
ð1� e�c2�eÞ for the rest portion of the hardening. Note that C1 and

C2 are the functions of �e in general and the value b is obtained from the prescribed yield surface described in
the following Section 2.4.
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2.4. Anisotropic yield stress function: Yld2000-2d

In order to describe the initial anisotropic yield stress surface, the yield function proposed by Barlat et al.
(2003) for the plane stress state is considered. The anisotropic yield function is defined as
f ¼ /0 þ /00

2
ð20Þ
where /0 ¼ jX 01 � X 02j
m
;/00 ¼ j2X 002 þ X 001j

m þ j2X 001 þ X 002j
m.

Here, f is the sum of two isotropic functions, which are symmetric with respect to X1 and X2. In the above
equation, X1 and X2 are the principal values of the matrices, X0 and X00, whose components are obtained from
the following linear transformation of the Cauchy stress (r) and the deviatoric Cauchy stress (r0), respectively:
X0 ¼ C0r0 ¼ C0Tr ¼ L0r ð21Þ

and
X00 ¼ C00r0 ¼ C00Tr ¼ L00r ð22Þ

where
L011
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2
6666664

3
7777775
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2=3 0 0

�1=3 0 0
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2
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3
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3
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L0066

2
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3
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¼ 1

9

�2 2 8 �2 0

1 �4 �4 4 0

4 �4 �4 1 0

�2 8 2 �2 0

0 0 0 0 1

2
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3
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a3

a4

a5
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a8

2
6666664

3
7777775

ð23Þ
where the eight coefficients, a1–a8 are anisotropic parameters which are obtained by the uni-axial tensile tests
with different directions and bi-axial test. However, when only seven coefficients are needed to account for the
seven input data for such as r0, r45, r90, r0, r45, r90 and rb, it may be assumed that a3 = a6 (therefore, L0012 ¼ L0021)
or a4 = a5 (therefore L0011 ¼ L0022Þ. The detailed characterization method for the yield stress surface and harden-
ing data is referred to the previous works (Lee et al., 2005a,b).

2.5. Numerical procedure

To calculate the stress expressed in Eq. (4), the numerical implementation follows the general procedure of
update algorithm using the elasto-plastic constitutive equations. First, the discrete tangential strain increment
is calculated using the drawbead geometry as described in Section 2.1 under the assumption of membrane
strain distribution. Next, the stress and other variables, such as equivalent plastic strain and back-stress,
are updated. The predictor–corrector scheme based on the Newton–Raphson method is used to solve the
unknown-increment of equivalent plastic strain. Finally, the equilibrium is checked by equating tangential
force derived in Eq. (4) with the prescribed tensile force distribution, which leads to simultaneous non-linear
equations for the membrane strain distribution. Here, the bi-section method was utilized to find the solutions
iteratively, in which a few number of iterations are needed for the solution in most cases. Note that the tensile
forces in the whole regions are numerically pre-determined with material properties and tool geometry. The
summary of the numerical procedure applied in the paper is schematically shown in Fig. 4.

3. Results and discussion

3.1. Numerical parametric tests

In order to validate the developed semi-analytical hybrid procedure, numerical sensitivity tests have been per-
formed for the effects of various parameters such as process and materials on the drawbead restraining forces. In
terms of process parameters, the friction and the amount of drawbead penetration are investigated. For the mate-
rial effects, the type of hardening law and the shape of yield surface are chosen for the sensitivity tests.



Fig. 4. The hybrid numerical scheme.
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The reference conditions employed in the sensitivity tests are as followings:

� Voce type hardening equation, �r ¼ �r0 þ qð1� e�b�eÞ
�r0 ¼ 166:2 MPa; q ¼ 215:8 MPa; b ¼ 8:9:
� Isotropic hardening law.
� Isotropic yield function: a1–a8 = 1.
� Yield potential exponent; m = 8.
� Young’s modulus; E = 70 GPa, Poisson’s ratio; v = 0.33.
� Radius of drawbead; Rd = 5.5 mm.
� Sheet thickness; t = 0.81 mm.
� Width of sheet; W = 50 mm.
� Drawbead gap; g = t + 0.08 mm.
� Bead depth; d = 2Rd + t.
� Coulomb friction coefficient; l = 0.15.
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The sheet is divided into 20 subsections through the thickness and 200 increments are utilized for the bend-
ing and unbending steps.

3.1.1. Effect of process

Fig. 5 shows DBRF associated with various Coulomb friction coefficients in the range between 0 and 0.2
for the reference condition described above. The DBRF increases as the friction coefficient increases. This
result is readily expected because the higher friction increases resistance of sliding sheet element on the bead
radius. Fig. 5 also shows that the curve fitting with an exponential function represents well the relation
between DBRF and friction coefficient. This is because the tension force increases exponentially as the mate-
rial travels on the drawbead as shown in Eq. (8).

Fig. 6 shows DBRF as a function of drawbead depth d. As the drawbead depth increases, the angle of con-
tact between sheet material and drawbead radius increases, as calculated by Eq. (5). This is explained by the
fact that the restraining force increases as a function of contact angle as shown in Eq. (8). Also, a solid line is
the fitted curve by the 4 parameter sigmoid function which represents S shape increase. The contact angle with
respect to the drawbead penetration is also presented in Fig. 7, which shows consistency in the shape of fitted
curve with the same type of fitting curve.

3.1.2. Effect of materials

The continuum plasticity consists of the description of elastic region by the yield function and its evolution
by the hardening law along with elastic properties such as Young’s modulus and Poisson’s ratio. In contrast to
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the analytical model to predict DBRF, advanced constitutive equations are adopted in this paper to represent
the material behavior of real metallic material.

Fig. 8 shows the DBRFs associated with various hardening parameters n for small draw bead penetration
(d = 2) and the large bead penetration (d = 11.8). In general, the larger DBRFs are predicted as the material
parameter n approaches 1. That is to say, the maximum DBRF is predicted for the pure isotropic hardening
law, while the minimum value is obtained by pure kinematic hardening law. The differences in DBRF between
two extreme hardening models are approximately 27% and 26% for two drawbead penetrations, respectively.
The figure also shows that the rate of increase of DBRF is linear and the higher rate is observed as the bead pen-
etration increases. In general, the sheet materials utilized for automotive parts are reported to have 50–70%
Bauschinger ratio (Lee et al., 2005a,b; Kim et al., 2003). Therefore, the sensitivity results seen in Fig. 8 confirm
that the accurate modeling of hardening behavior will play a significant role in predicting the DBRF. The differ-
ences in DBRF associated with hardening models can be explained by the stress–strain responses with non-
monotonous deformation state. Fig. 9 shows the history of stress–strain curves of the most outer sheet surface
(z = �t/2) in the region 6 shown in Fig. 1. The most outer surface of the sheet element passing through the region
6 experiences consecutively the bending and unbending processes. As shown in Fig. 9, the stresses of all hardening
models have the same value when the sheet undergoes the first bending (monotonic compression). However,
when the deformation path is changed by passing the unbending area, the stresses become quite different by
the amount of assumed Bauschinger ratio of each hardening type. The differences in the stress significantly affect
the amount of additional bending energies. Note that the difference in stress state among hardening models
becomes more significant when the sheet element experiences more cyclic deformation. In addition to the tensile
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force at the exit of drawbead, the increase in tensile forces in 6 regions with respect to different hardening types are
shown in Fig. 10. The figure explicitly shows the increase of tensile force as the material experiences bending,
unbending and sliding with friction at the contact regions (regions 2, 4 and 6). Regarding the effect of hardening
type, the difference in tension increasingly becomes significant as the material experiences more bending and
unbending, as explained in the stress–strain history. Note that there is no difference in tension when the material
passes in region 2 in which the material does not experience the path change yet.

Yield surface is another important part of constitutive equations in describing material behavior of metals.
Thus, in this paper, the effect of the yield surface on DBRF is investigated. Among the parameters in Yld2000-
2d, the exponent m determines the shape of yield surface and can represent from Von Mises yield surface with
m = 2 to Tresca yield surface with m = infinity. Generally, the exponent 6 for BCC metals and 8 for FCC met-
als are recommended based on the texture analysis. Here, four exponents m = 2, 6, 8, 16 are chosen for the
sensitivity tests. The other parameters are set unity so that only isotropic case is considered. Example shapes
of Yld200-2d yield functions with different exponents are shown in Fig. 11. Fig. 12 shows the DBRFs asso-
ciated with different exponents for two drawbead depths. It shows that the DBRF increases linearly as the
exponent decreases. The decrease in DBRF can be explained by the relation between the exponent m and
parameter b in Eq. (15). As the exponent m decreases, b increases, which results in the increase of stress cor-
responding to the plane strain state for the same uni-axial hardening behavior.

3.2. Comparison of prediction with measurement

The measured DBRFs of a single circular drawbead with two different conditions are compared with the
prediction in this section. The initial size of sheet strip is 45 mm (width) � 300 mm (length). The drawing force
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is measured while the grip clamping an edge of the specimen is pulled out. The friction coefficient was obtained
from the Coulomb friction law relating the normal force and frictional force. Using the drawing tests, the fric-
tional force was obtained from the difference between the DBRFs obtained in the fixed drawbead and roller
drawbead drawing tests. On the other hand, the normal force is the blank holder force (BHF). The detained
experimental procedure can be referred to the previous work by Keum et al. (2001). The material is SPCC steel
and two experimental data with different sheet thicknesses and friction coefficients are reproduced for the
comparisons.

The hardening behavior of SPCC steel sheet obtained from uni-axial tension tests is fitted by the Voce type
equation, as shown in Fig. 13. The elastic properties are E = 200 GPa, v = 0.3 and the hardening parameters
are �r0 ¼ 165 MPa, q = 193 MPa and b = 12.8. As for the anisotropic yield surface, six material data including
three uni-axial yield stresses, three r-values in the three material directions listed in Table 1 are utilized.
Another material data for the balanced-biaxial yield stress normalized by the rolling (0� direction) is assumed
unity. The exponent of Yld2000-2d is m = 6 to represent BCC metals. The seven anisotropic coefficients of
Yld2000-2d described in the previous section, assuming a3 = a6, are calculated using the Newton–Raphson
iteration method and listed in Table 2. The yield surface of SPCC steel normalized by yield stress in the rolling
direction is presented in Fig. 14. The figure shows the yield surface of SPCC has round corner with the nature
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Table 1
Tensile properties of the SPCC steel sheet

Direction (�) Yield strength (MPa) UTS (MPa) Elongation (%) r-value

0 165.0 296.0 45.1 1.80
90 166.7 295.7 43.8 1.97
45 174.3 309.3 40.9 1.14

Table 2
Anisotropic coefficients of Yld2000-2d for SPCC steel sheet

m a1 a2 a3 a4 a5 a6 a7 a8

6 1.06 1.04 1.07 0.96 0.97 1.08 0.97 0.85
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of non-quadratic function. The dimensions of circular drawbead are: Rd = 3.3 mm (bead radius), d = 3 mm
(bead height). The calculations by adopting the current hybrid method are performed and compared with
the two sets of measurement. In terms of the bead gap, g = t + 0.2 mm where t is sheet thickness was used
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for the following two examples. In Fig. 15(a), the measured DBRF associated with (lower) BHF = 110 N/mm,
l = 0.14, t = 0.6 mm is compared with the simulated results by different hardening models. In addition to the
prediction with the current constitutive equations, the equivalent drawbead model originally proposed by
Stoughton (1988) and later modified by Keum et al. (2001) was also compared. The explicit form of the equiv-
alent drawbead forces can be referred to their earlier works (for example, Eq. (5) in Keum et al. (2001) was
used here to consider the effect of blank holder force on top of the original result by Stoughton (1988)). Note
the effective bead radius (Rd,eff) defined in the work by Stoughton (1988) was used instead of using physical
bead radius: 1/Rd,eff = sin(h)/Rd. The hardening parameters for the Stoughton’s model are K = 485.6 MPa
and n = 0.2 for the power law type equation �r ¼ Ken. As done in the parametric tests, the pure isotropic hard-
ening and pure kinematic hardening are represented with n = 1.0 and n = 0, respectively, in Eq. (17). The fig-
ure shows that the results by the pure isotropic hardening and Stoughton’s model overestimate measured
DBRF, while pure kinematic hardening underestimates. When the pure isotropic model based on the present
hybrid model and the Stoughton’s equivalent draw bead model are compared, the prediction in the absolute
values are similar. The difference between these two models might be due to the different flow equations, yield
functions and effective bead radius introduced in the equivalent draw bead model. Since the uni-axial tension/
compression data are not available for this material, which are needed to characterize the Bauschinger effect,
the best Bauschinger ratio, or n is employed from the previously reported value. The value n = 0.6 shows a
good agreement with experimentally measured DBRF. Similar comparisons are made in Fig. 15(b) for differ-
ent set of measurement with (higher) BHF = 165 N/mm, l = 0.17, t = 0.8 mm. The result is quite similar as
that for lower BHF when the Bauschinger ratio is n = 0.6. The overestimation by the Stoughton’s model was
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expected because it is also based on the isotropic hardening and therefore cannot consider earlier yielding dur-
ing the reverse bending.

In some previous works (Lee et al., 2005a,b), no significant differences were reported between results pre-
dicted from the (pure) isotropic hardening model and combined isotropic–kinematic hardening model in form-
ability and springback of automotive part. The springback of automotive parts is significant in the sidewall
curl where the sheet material experiences one consecutive bending and unbending, while the material in the
draw bead undergoes multiple process of reverse loading. Fig. 10 supports this for the predicted draw bead
restraining force in that the differences in the bead force among various material models are not so significant
during the early region but become relatively larger as the material passes the draw bead. Therefore, as the
comparisons show, the real DBRFs can be predicted when the constitutive equations which can represent
the real anisotropic behavior of sheet material are taken into consideration. Also, it is concluded that the
developed numerical method can be successfully used to predict the accurate DBRF without spending much
computation cost.

4. Conclusions
(1) Semi-analytic hybrid membrane/bending method based on plane strain state was developed to predict
the drawbead restraining force. Since the developed method is not based on the finite-element procedure
for the solutions of bending and stretching, it is computationally efficient.

(2) The developed hybrid method can accommodate the combination type isotropic–kinematic hardening law
and non-quadratic anisotropic yield function. Thus, the method effectively considers the mechanical behav-
ior of real metallic materials which show Bauschinger effect, transient behavior and significant anisotropy.

(3) Numerical sensitivity tests were carried out by varying process and material parameters. In terms of pro-
cess effect, the DBRFs as functions of friction coefficient and drawbead depth were calculated. The
DBRF increases exponentially as the friction coefficient increases, while shows sigmoid increase as the
bead depth increases. In terms of material effects, different hardening models and the shape of yield func-
tion were considered in the sensitivity tests. The calculation with (pure) isotropic hardening model
resulted in the maximum DBRF, while minimum value was predicted for the (pure) kinematic harden-
ing. The difference in DBRF for the two extreme hardening models was approximately 26%. With
increasing exponent of Yld2000-2d the DBRF decreased linearly, which is due to the smaller plane strain
stress for larger exponent.

(4) The comparisons between measurements and calculations for the SPCC steel showed that the aniso-
tropic hardening behavior should be considered to precisely predict the DBRF in drawbead simulation.
Especially, when the approximate Bauschinger ratio for the steel sheet which was reported in other
works is considered, the calculated DBRFs gave good agreement with those of experiments.
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