44 research outputs found

    Wavelength-dependent effect of tetra(m-hydroxyphenyl)chlorin for photodynamic therapy in an ‘early' squamous cell carcinoma model

    Get PDF
    The purpose of the present study was to correlate the wavelength of the irradiation source with the phototoxic activity of tetra(m-hydroxyphenyl)chlorin (mTHPC) in healthy and neoplastic mucosae. The hamster tumour model for early squamous cell carcinoma was used in these experiments. In vitro and in vivo studies have shown that mTHPC absorbs significantly at 652 nm (1, 2). This wavelength is used currently in clinical mTHPC photodynamic therapy (PDT) trials. In order to study the wavelength dependence of the phototoxic effect on normal and tumour tissues, irradiation tests were performed 4 days after injection of 0.5mg kg-1 mTHPC. An argon-ion pumped dye laser was used as the light source. The light dose of 12 J cm-2 was delivered at a light dose rate of 150 mW cm-2. The wavelength was varied between 642.5 and 665 nm at 2.5-nm increments. The PDT damage was evaluated in serial Haematoxylin and Eosin stained sections using a tissue-damage scale. Light between 647.5 and 652.5 nm induced the highest damage to both the healthy and tumour mucosae. At wavelengths equal to or below 645 nm, and equal to or above 655 nm, tissue damage decreased. Wavelengths below 642 nm and above 660 nm did not induce any visible tissue damage. These results suggest that the in vivo optimal wavelength range for PDT with mTHPC is between 647 and 652 nm. This information is essential for selecting an appropriate light sourc

    Study of the stability of the 5-aminolevulinic acid tyrosine ester in aqueous solution

    Get PDF
    Photodynamic therapy based on photoactivable porphyrins (PAPs) can treat various dermatological conditions. The side-effects as well as the non-selective or insufficient accumulation of PAPs in the targeted tissues limit performances. We studied the stability in solution at different temperatures (21 degrees C; 4 degrees C), different pH values (7.5; 2.0), and as a function of time of 5-aminolevulinic acid's Tyrosine-ester, a molecule presenting interesting properties to selectively produce PAPs in blood vessels after topical application. Solutions of this precursor can be kept up to 24 h at refrigerated temperatures and under acidic pH. At room temperature or physiological pH, they must be prepared minutes before their use

    Uptake and localisation of mTHPC (Foscan®) and its14C-labelled form in normal and tumour tissues of the hamster squamous cell carcinoma model: a comparative study

    Get PDF
    The aim of this study was to evaluate the pharmacokinetics of meta(tetrahydroxyphenyl)chlorin (mTHPC) on different tissues of interest in a hamster tumour model and to confirm our earlier animal studies on semi-quantitative fluorescence microscopy. The results obtained by three different evaluation methods were compared: in vivo spectrofluorometry, ex vivo fluorescence microscopy and chemical extraction of 14C-labelled mTHPC. Following intracardiac injection of 0.5 mg kg−1 mTHPC, groups of five tumour-bearing animals were used for in situ light-induced fluorescence spectroscopy. Afterwards, the biopsies were taken and snap frozen for fluorescence microscopy. The presence of radioactivity in serum and tissues was determined after chemical digestion in scintillation fluid using a scintillation counter. For each analysed tissue, a good correlation was observed between the three evaluation methods. The highest fluorescence intensity and quantities of mTHPC were observed between 12 and 24 h in liver, kidney, serum, vascular endothelium and advanced neoplasia. The majority of mTHPC was found at around 48 h in smooth muscle and at 96 h in healthy cheek pouch mucosa and early malignant lesions. The lowest level of mTHPC was noted in striated muscle at all times. No selectivity in dye localisation was observed between early squamous cell carcinoma and healthy mucosa. Soon after the injection, a significant selectivity was noted for advanced squamous cell carcinoma as compared to healthy cheek pouch mucosa or striated muscle. A significant difference in mTHPC localisation and quantity was also observed between striated and smooth muscle during the first 48 h following the injection. Finally, this study demonstrated the usefulness of non-invasive in situ spectroscopic measurements to be performed systematically prior to photodynamic therapy as a real-time monitoring for each treated patient in order to individualise and adapt the light dosimetry and avoid over or under treatments

    Wavelength-dependent effect of tetra(m-hydroxyphenyl) chlorin for photodynamic therapy in an "early" squamous cell carcinoma model

    Get PDF
    The purpose of the present study was to correlate the wavelength of the irradiation source with the phototoxic activity of tetra(m-hydroxyphenyl)chlorin (mTHPC) in healthy and neoplastic mucosae. The hamster tumour model for early squamous cell carcinoma was used in these experiments. In vitro and in vivo studies have shown that mTHPC absorbs significantly at 652 nm (1, 2). This wavelength is used currently in clinical mTHPC photodynamic therapy (PDT) trials. In order to study the wavelength dependence of the phototoxic effect on normal and tumour tissues, irradiation tests were performed 4 days after injection of 0.5mg kg-1 mTHPC. An argon-ion pumped dye laser was used as the light source. The light dose of 12 J cm-2 was delivered at a light dose rate of 150 mW cm-2. The wavelength was varied between 642.5 and 665 nm at 2.5-nm increments. The PDT damage was evaluated in serial Haematoxylin and Eosin stained sections using a tissue-damage scale. Light between 647.5 and 652.5 nm induced the highest damage to both the healthy and tumour mucosae. At wavelengths equal to or below 645 nm, and equal to or above 655 nm, tissue damage decreased. Wavelengths below 642 nm and above 660 nm did not induce any visible tissue damage. These results suggest that the in vivo optimal wavelength range for PDT with mTHPC is between 647 and 652 nm. This information is essential for selecting an appropriate light source

    Selectivity of the photosensitiser Tookad® for photodynamic therapy evaluated in the Syrian golden hamster cheek pouch tumour model

    Get PDF
    The response to photodynamic therapy (PDT) with the photosensitiser (PS) Tookad was measured in the Syrian hamster cheek pouch model on normal mucosae and chemically induced squamous cell carcinoma. This PS is a palladium-bacteriopheophorbide presenting absorption peaks at 538 and 762 nm. The light dose, drug dose and drug injection-light irradiation times (DLI), ranging between 100 and 300 J cm(-2), 1-5 mg kg(-1) and 10-240 min respectively, were varied and the response to PDT was analysed by staging the macroscopic response and by the histological examination of the sections of the irradiated cheek pouch. A fast time decay of the tissular response with drug dose of 1-5 mg kg(-1) was observed for DLI ranging from 10 to 240 min and for light doses of 100-300 J cm(-2) delivered at a light dose rate of 150 mW cm(-2). A significantly higher level of tissular response was observed for squamous cell carcinoma compared to normal tissue. Nevertheless, the threshold level of the drug-light dose for a detectable response was not significantly different in the tumoral vs normal tissue. The highest response at the shortest DLIs and the absence of measurable response at DLI larger than 240 min at light dose of 300 J cm(-2) and drug dose of 5 mg kg(-1) reveals the predominantly vascular effect of Tookad. This observation suggests that Tookad could be effective in PDT of vascularised lesions
    corecore