2,941 research outputs found

    Role of inertia in two-dimensional deformation and breakup of a droplet

    Full text link
    We investigate by Lattice Boltzmann methods the effect of inertia on the deformation and break-up of a two-dimensional fluid droplet surrounded by fluid of equal viscosity (in a confined geometry) whose shear rate is increased very slowly. We give evidence that in two dimensions inertia is {\em necessary} for break-up, so that at zero Reynolds number the droplet deforms indefinitely without breaking. We identify two different routes to breakup via two-lobed and three-lobed structures respectively, and give evidence for a sharp transition between these routes as parameters are varied.Comment: 4 pages, 4 figure

    Unraveling the phase behavior, mechanical stability, and protein reconstitution properties of polymer-lipid hybrid vesicles

    Get PDF
    Hybrid vesicles consisting of natural phospholipids and synthetic amphiphilic copolymers have shown remarkable material properties and potential for biotechnology, combining the robustness of polymers with the biocompatibility of phospholipid membranes. To predict and optimize the mixing behavior of lipids and copolymers, as well as understand the interaction between the hybrid membrane and macromolecules like membrane proteins, a comprehensive understanding at the molecular level is essential. This can be achieved by a combination of molecular dynamics simulations and experiments. Here, simulations of POPC and PBD22-b-PEO14 hybrid membranes are shown, uncovering different copolymer configurations depending on the polymer-to-lipid ratio. High polymer concentrations created thicker membranes with an extended polymer conformation, while high lipid content led to the collapse of the polymer chain. High concentrations of polymer were further correlated with a decreased area compression modulus and altered lateral pressure profiles, hypothesized to result in the experimentally observed improvement in membrane protein reconstitution and resistance toward destabilization by detergents. Finally, simulations of a WALP peptide embedded in the bilayer showed that only membranes with up to 50% polymer content favored a transmembrane configuration. These simulations correlate with previous and new experimental results and provide a deeper understanding of the properties of lipid-copolymer hybrid membranes

    Microbial impacts of CO2 transport in Sherwood Sandstone

    Get PDF
    Work carried out by BGS and the Japan Atomic Energy Authority (JAEA) has shown that microbial processes can have profound effects on the transport properties of host rock (i.e. the movement of fluids and contaminants through the host material) relevant to radioactive waste disposal. Recent research, performed as part of the BGS Radtran project, has examined Sherwood Sandstone samples in the context of radioactive waste disposal; this particular formation is also a potential reservoir for carbon dioxide storage in the UK. As part of the BGS opportunities fund programme, this project has, for the first time, evaluated interactions between fluids saturated with carbon dioxide/Sherwood Sandstone/microbes (Pseudomonas aeruginosa) in transport experiments, using BGS developed apparatus under pressurised subsurface conditions. This pilot study has highlighted the impacts of differences in the physical characteristics of core Sherwood Sandstone samples collected adjacent to each other in a core sample, and the ability of P. aeruginosa to survive in CO2 saturated artificial groundwater and the potential to form a biofilm in an environment suitable likely to be found at a carbon capture and storage location. These results demonstrate that in this short study, the injection of P. aeruginosa into the biotic experiment does not appear to impact on the physical transport properties of the Sherwood Sandstone, although the presence of CO2 appears to enhance the mobilisation of a number of chemical species. However, in other work which utilised the same organism and rock type but without introduction of CO2 saturated fluid, post-inoculation injection changes were observed. These included short but rapid saw-tooth like changes in the pressure profile (Wragg et al, 2012). These impacts were not observed in the current study which suggests that the CO2 saturated fluid was impacting on the ability of the microbes to alter permeability. This short study has, however, indicated the need to carry out longer term investigations to reproduce these initial findings

    Sputter Deposition of Semiconductor Superlattices for Thermoelectric Applications

    Get PDF
    Theoretical dramatic improvement of the thermoelectric properties of materials by using quantum confinement in novel semiconductor nanostructures has lead to considerable interest in the thermoelectric community. Therefore, we are exploring the critical materials issues for fabrication of quantum confined structures by magnetron sputtering in the lead telluride and bismuth telluride families of materials. We have synthesized modulated structures from thermoelectric materials with bilayer periods of as little as 3.2 nm and shown that they are stable at deposition temperatures high enough to grow quality films. Issues critical to high quality film growth have been investigated such as nucleation and growth conditions and their effect on crystal orientation and growth morphology. These investigations show that nucleating the film at a temperature below the growth temperature of optimum electronic properties produces high quality films. Our work with sputter deposition, which is inherently a high rate deposition process, builds the technological base necessary to develop economical production of these advanced materials. High deposition rate is critical since, even if efficiencies comparable with CFC based refrigeration systems can be achieved, large quantities of quantum confined materials will be necessary for cost-competitive uses

    Delocalization in harmonic chains with long-range correlated random masses

    Full text link
    We study the nature of collective excitations in harmonic chains with masses exhibiting long-range correlated disorder with power spectrum proportional to 1/kα1/k^{\alpha}, where kk is the wave-vector of the modulations on the random masses landscape. Using a transfer matrix method and exact diagonalization, we compute the localization length and participation ratio of eigenmodes within the band of allowed energies. We find extended vibrational modes in the low-energy region for α>1\alpha > 1. In order to study the time evolution of an initially localized energy input, we calculate the second moment M2(t)M_2(t) of the energy spatial distribution. We show that M2(t)M_2(t), besides being dependent of the specific initial excitation and exhibiting an anomalous diffusion for weakly correlated disorder, assumes a ballistic spread in the regime α>1\alpha>1 due to the presence of extended vibrational modes.Comment: 6 pages, 9 figure

    Rings and rigidity transitions in network glasses

    Full text link
    Three elastic phases of covalent networks, (I) floppy, (II) isostatically rigid and (III) stressed-rigid have now been identified in glasses at specific degrees of cross-linking (or chemical composition) both in theory and experiments. Here we use size-increasing cluster combinatorics and constraint counting algorithms to study analytically possible consequences of self-organization. In the presence of small rings that can be locally I, II or III, we obtain two transitions instead of the previously reported single percolative transition at the mean coordination number rˉ=2.4\bar r=2.4, one from a floppy to an isostatic rigid phase, and a second one from an isostatic to a stressed rigid phase. The width of the intermediate phase  rˉ~ \bar r and the order of the phase transitions depend on the nature of medium range order (relative ring fractions). We compare the results to the Group IV chalcogenides, such as Ge-Se and Si-Se, for which evidence of an intermediate phase has been obtained, and for which estimates of ring fractions can be made from structures of high T crystalline phases.Comment: 29 pages, revtex, 7 eps figure

    The first cases of gynandromorphism in oil‑collecting bees (Hymenoptera, Apidae: Centridini, Tapinotaspidini)

    Get PDF
    Here we provide descriptions of gynandromorphs of two species oil-collecting bees: Lophopedia nigrispinis and Epicharis iheringii, both with partial bilateral phenotypic asymmetry. The bees have a female phenotype predominantly on mesosoma and metasoma. The specimen of L. nigrispinis has distinct characteristics on legs, suggesting a mosaic pattern of gynandromorphism. The pollen and oil loads on legs suggest that the bee was foraging normally. The gynander specimen of E. iheringii has mostly a female phenotype, except for head, with right half female type and left half male type. The specimen of L. nigrispinis was collected foraging on flowers of Bidens sp. at Parque Nacional Iguazú, Argentina with loads of pollen on legs suggesting it was reproductive and was provisioning a nest. The specimen of Epicharis iheriingi has no evidence of any oil or pollen collection, despite its mostly female phenotype.Facultad de Ciencias Naturales y Muse
    corecore