41,776 research outputs found

    How does Casimir energy fall? III. Inertial forces on vacuum energy

    Full text link
    We have recently demonstrated that Casimir energy due to parallel plates, including its divergent parts, falls like conventional mass in a weak gravitational field. The divergent parts were suitably interpreted as renormalizing the bare masses of the plates. Here we corroborate our result regarding the inertial nature of Casimir energy by calculating the centripetal force on a Casimir apparatus rotating with constant angular speed. We show that the centripetal force is independent of the orientation of the Casimir apparatus in a frame whose origin is at the center of inertia of the apparatus.Comment: 8 pages, 2 figures, contribution to QFEXT07 proceeding

    Test of the Equivalence Principle Using a Rotating Torsion Balance

    Full text link
    We used a continuously rotating torsion balance instrument to measure the acceleration difference of beryllium and titanium test bodies towards sources at a variety of distances. Our result Delta a=(0.6+/-3.1)x10^-15 m/s^2 improves limits on equivalence-principle violations with ranges from 1 m to infinity by an order of magnitude. The Eoetvoes parameter is eta=(0.3+/-1.8)x10^-13. By analyzing our data for accelerations towards the center of the Milky Way we find equal attractions of Be and Ti towards galactic dark matter, yielding eta=(-4 +/- 7)x10^-5. Space-fixed differential accelerations in any direction are limited to less than 8.8x10^-15 m/s^2 with 95% confidence.Comment: 4 pages, 4 figures; accepted for publication in PR

    Bose-Einstein condensates with attractive 1/r interaction: The case of self-trapping

    Full text link
    Amplifying on a proposal by O'Dell et al. for the realization of Bose-Einstein condensates of neutral atoms with attractive 1/r1/r interaction, we point out that the instance of self-trapping of the condensate, without external trap potential, is physically best understood by introducing appropriate "atomic" units. This reveals a remarkable scaling property: the physics of the condensate depends only on the two parameters N2a/auN^2 a/a_u and γ/N2\gamma/N^2, where NN is the particle number, aa the scattering length, aua_u the "Bohr" radius and γ\gamma the trap frequency in atomic units. We calculate accurate numerical results for self-trapping wave functions and potentials, for energies, sizes and peak densities, and compare with previous variational results. As a novel feature we point out the existence of a second solution of the extended Gross-Pitaevskii equation for negative scattering lengths, with and without trapping potential, which is born together with the ground state in a tangent bifurcation. This indicates the existence of an unstable collectively excited state of the condensate for negative scattering lengths.Comment: 7 pages, 7 figures, to appear in Phys. Rev.

    Dynamics of mesoscopic precipitate lattices in phase separating alloys under external load

    Full text link
    We investigate, via three-dimensional atomistic computer simulations, phase separation in an alloy under external load. A regular two-dimensional array of cylindrical precipitates, forming a mesoscopic precipitate lattice, evolves in the case of applied tensile stress by the movement of mesoscopic lattice defects. A striking similarity to ordinary crystals is found in the movement of "meso-dislocations", but new mechanisms are also observed. Point defects such as "meso-vacancies" or "meso-interstitials" are created or annihilated locally by merging and splitting of precipitates. When the system is subjected to compressive stress, we observe stacking faults in the mesoscopic one-dimensional array of plate-like precipitates.Comment: 4 pages, 4 figures, REVTE

    Direct measurement of shear-induced cross-correlations of Brownian motion

    Full text link
    Shear-induced cross-correlations of particle fluctuations perpendicular and along stream-lines are investigated experimentally and theoretically. Direct measurements of the Brownian motion of micron-sized beads, held by optical tweezers in a shear-flow cell, show a strong time-asymmetry in the cross-correlation, which is caused by the non-normal amplification of fluctuations. Complementary measurements on the single particle probability distribution substantiate this behavior and both results are consistent with a Langevin model. In addition, a shear-induced anti-correlation between orthogonal random-displacements of two trapped and hydrodynamically interacting particles is detected, having one or two extrema in time, depending on the positions of the particles.Comment: 4 pages, 4 figure

    Stick-slip instability for viscous fingering in a gel

    Full text link
    The growth dynamics of an air finger injected in a visco-elastic gel (a PVA/borax aqueous solution) is studied in a linear Hele-Shaw cell. Besides the standard Saffmann-Taylor instability, we observe - with increasing finger velocities - the existence of two new regimes: (a) a stick-slip regime for which the finger tip velocity oscillates between 2 different values, producing local pinching of the finger at regular intervals, (b) a ``tadpole'' regime where a fracture-type propagation is observed. A scaling argument is proposed to interpret the dependence of the stick-slip frequency with the measured rheological properties of the gel.Comment: 7 pages, 4 figures. Submitted to Europhysics Letter
    corecore