41,635 research outputs found

    X-ray measurements of stresses and defects in EFG and large grained polycrystalline silicon ribbons

    Get PDF
    The Bond method was employed to measure the lattice parameter in an area of 0.4 mm in diameter of EFG Si-ribbons to an accuracy of + or - 0.00008 A. A Bond goniometer was built which included a goniostat with a special specimen holder to mount ribbons 1 m in length and 75 mm in width which could be rotated about two orthogonal axes, and a Leitz microscope for precision alignment of a particular area into the center of the goniostat and the small primary X-ray beam. The (321) planes were found to be parallel to the surface of the ribbons with an angular spread of about 15 deg. The poles of the (111) planes clustered about an angle of 25 deg away from the surface normal, again with a spread of 10 deg. The lattice parameter of a small piece of ribbon material was found to be a sub o = 5.43075 A. A maximum stress of 115 MPa was observed in a fractured ribbon which corresponded to the fracture stress of single crystals of Si

    Wedges, Cones, Cosmic Strings, and the Reality of Vacuum Energy

    Full text link
    One of J. Stuart Dowker's most significant achievements has been to observe that the theory of diffraction by wedges developed a century ago by Sommerfeld and others provided the key to solving two problems of great interest in general-relativistic quantum field theory during the last quarter of the twentieth century: the vacuum energy associated with an infinitely thin, straight cosmic string, and (after an interchange of time with a space coordinate) the apparent vacuum energy of empty space as viewed by an accelerating observer. In a sense the string problem is more elementary than the wedge, since Sommerfeld's technique was to relate the wedge problem to that of a conical manifold by the method of images. Indeed, Minkowski space, as well as all cone and wedge problems, are related by images to an infinitely sheeted master manifold, which we call Dowker space. We review the research in this area and exhibit in detail the vacuum expectation values of the energy density and pressure of a scalar field in Dowker space and the cone and wedge spaces that result from it. We point out that the (vanishing) vacuum energy of Minkowski space results, from the point of view of Dowker space, from the quantization of angular modes, in precisely the way that the Casimir energy of a toroidal closed universe results from the quantization of Fourier modes; we hope that this understanding dispels any lingering doubts about the reality of cosmological vacuum energy.Comment: 28 pages, 16 figures. Special volume in honor of J. S. Dowke

    Surface tension of electrolytes: Hydrophilic and hydrophobic ions near an interface

    Full text link
    We calculate the ion distributions around an interface in fluid mixtures of highly polar and less polar fluids (water and oil) for two and three ion species. We take into account the solvation and image interactions between ions and solvent. We show that hydrophilic and hydrophobic ions tend to undergo a microphase separation at an interface, giving rise to an enlarged electric double layer. We also derive a general expression for the surface tension of electrolyte systems, which contains a negative electrostatic contribution proportional to the square root of the bulk salt density. The amplitude of this square-root term is small for hydrophilic ion pairs, but is much increased for hydrophilic and hydrophobic ion pairs. For three ion species including hydrophilic and hydrophobic ions, we calculate the ion distributions to explain those obtained by x-ray reflectivity measurements.Comment: 8 figure

    Direct Measurement of 2D and 3D Interprecipitate Distance Distributions from Atom-Probe Tomographic Reconstructions

    Full text link
    Edge-to-edge interprecipitate distance distributions are critical for predicting precipitation strengthening of alloys and other physical phenomena. A method to calculate this 3D distance and the 2D interplanar distance from atom-probe tomographic data is presented. It is applied to nanometer-sized Cu-rich precipitates in an Fe-1.7 at.% Cu alloy. Experimental interprecipitate distance distributions are discussed

    ROSAT HRI observations of Centaurus A

    Get PDF
    We present results from a sensitive high-resolution X-ray observation of the nearby active galaxy Centaurus A (NGC 5128) with the ROSAT HRI. The 65~ksec X-ray image clearly distinguishes different components of the X-ray emission from Cen A: the nucleus and the jet, the diffuse galaxy halo, and a number of individual sources associated with the galaxy. The luminosity of the nucleus increased by a factor of two compared to an earlier ROSAT observation in 1990. The high spatial resolution of the ROSAT HRI shows that most of the knots in the jet are extended both along and perpendicular to the jet axis. We report the detection of a new X-ray feature, at the opposite side of the X-ray jet which is probably due to compression of hot interstellar gas by the expanding southwestern inner radio lobe.Comment: To be published in Astrophys. Journal Letters. 4 pages, 3 plate

    Simulation of associative learning with the replaced elements model

    No full text
    Associative learning theories can be categorised according to whether they treat the representation of stimulus compounds in an elemental or configural manner. Since it is clear that a simple elemental approach to stimulus representation is inadequate there have been several attempts to produce more elaborate elemental models. One recent approach, the Replaced Elements Model (Wagner, 2003), reproduces many results that have until recently been uniquely predicted by Pearceā€™s Configural Theory (Pearce, 1994). Although it is possible to simulate the Replaced Elements Model using ā€œstandardā€ simulation programs the generation of the correct stimulus representation is complex. The current paper describes a method for simulation of the Replaced Elements Model and presents the results of two example simulations that show differential predictions of Replaced Elements and Pearceā€™s Configural Theor

    Bound pair states beyond the condensate for Fermi systems below T_c: the pseudogap as a necessary condition

    Full text link
    As is known, the 1/q^2 theorem of Bogoliubov asserts that the mean density of the fermion pair states with the total momentum q obeys the inequality n_q > C/q^2 (q \to 0) in the case of the Fermi system taken at nonzero temperature and in the superconducting state provided the interaction term of its Hamiltonian is locally gauge invariant. With the principle of correlation weakening it is proved in this paper that the reason for the mentioned singular behaviour of n_q is the presence of the bound states of particle pairs with nonzero total momenta. Thus, below the temperature of the superconducting phase transition there always exist the bound states of the fermion couples beyond the pair condensate. If the pseudogap observed in the normal phase of the high-T_c superconductors is stipulated by the presence of the electron bound pairs, then the derived result suggests, in a model-independent manner, that the pseudogap survives below T_c.Comment: REVTeX, 8 pages, no figures, submitted to Phys. Rev.

    Elucidating the structural composition of a Fe-N-C catalyst by nuclear and electron resonance techniques

    Get PDF
    Feā€“Nā€“C catalysts are very promising materials for fuel cells and metalā€“air batteries. This work gives fundamental insights into the structural composition of an Feā€“Nā€“C catalyst and highlights the importance of an inā€depth characterization. By nuclearā€ and electronā€resonance techniques, we are able to show that even after mild pyrolysis and acid leaching, the catalyst contains considerable fractions of Ī±ā€iron and, surprisingly, iron oxide. Our work makes it questionable to what extent FeN4 sites can be present in Feā€“Nā€“C catalysts prepared by pyrolysis at 900ā€‰Ā°C and above. The simulation of the iron partial density of phonon states enables the identification of three FeN4 species in our catalyst, one of them comprising a sixfold coordination with endā€on bonded oxygen as one of the axial ligands
    • ā€¦
    corecore