40,114 research outputs found

    Thermodynamic consistency of liquid-gas lattice Boltzmann simulations

    Full text link
    Lattice Boltzmann simulations have been very successful in simulating liquid-gas and other multi-phase fluid systems. However, the underlying second order analysis of the equation of motion has long been known to be insufficient to consistently derive the fourth order terms that are necessary to represent an extended interface. These same terms are also responsible for thermodynamic consistency, i.e. to obtain a true equilibrium solution with both a constant chemical potential and a constant pressure. In this article we present an equilibrium analysis of non-ideal lattice Boltzmann methods of sufficient order to identify those higher order terms that lead to a lack of thermodynamic consistency. We then introduce a thermodynamically consistent forcing method.Comment: 12 pages, 8 figure

    AGN Feedback Compared: Jets versus Radiation

    Full text link
    Feedback by Active Galactic Nuclei is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGN of 104310^{43} and 104610^{46} erg/s, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarifies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20%20\% in 2020 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.010.10.01-0.1 M_\odot/yr, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGN modulate their own duty cycle in a feedback/feeding cycle.Comment: 21 pages, 15 figures, 2 table

    Numerical Investigation of Second Mode Attenuation over Carbon/Carbon Surfaces on a Sharp Slender Cone

    Full text link
    We have carried out axisymmetric numerical simulations of a spatially developing hypersonic boundary layer over a sharp 7^{\circ{}}-half-angle cone at M=7.5M_\infty=7.5 inspired by the experimental investigations by Wagner (2015). Simulations are first performed with impermeable (or solid) walls with a one-time broadband pulse excitation applied upstream to determine the most convectively-amplified frequencies resulting in the range 260kHz -- 400kHz, consistent with experimental observations of second-mode instability waves. Subsequently, we introduce harmonic disturbances via continuous periodic suction and blowing at 270kHz and 350kHz. For each of these forcing frequencies complex impedance boundary conditions (IBC), modeling the acoustic response of two different carbon/carbon (C/C) ultrasonically absorptive porous surfaces, are applied at the wall. The IBCs are derived as an output of a pore-scale aeroacoustic analysis -- the inverse Helmholtz Solver (iHS) -- which is able to return the broadband real and imaginary components of the surface-averaged impedance. The introduction of the IBCs in all cases leads to a significant attenuation of the harmonically-forced second-mode wave. In particular, we observe a higher attenuation rate of the introduced waves with frequency of 350kHz in comparison with 270kHz, and, along with the iHS impedance results, we establish that the C/C surfaces absorb acoustic energy more effectively at higher frequencies.Comment: AIAA-SciTech 201

    An H-Theorem for the Lattice Boltzmann Approach to Hydrodynamics

    Full text link
    The lattice Boltzmann equation can be viewed as a discretization of the continuous Boltzmann equation. Because of this connection it has long been speculated that lattice Boltzmann algorithms might obey an H-theorem. In this letter we prove that usual nine-velocity models do not obey an H-theorem but models that do obey an H-theorem can be constructed. We consider the general conditions a lattice Boltzmann scheme must satisfy in order to obey an H-theorem and show why on a lattice, unlike the continuous case, dynamics that decrease an H-functional do not necessarily lead to a unique ground state.Comment: 6 pages, latex, no figures, accepted for publication in Europhys. Let

    Ultrafast outflows: Galaxy-scale active galactic nucleus feedback

    Get PDF
    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy

    Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand

    Get PDF
    We have constructed an artificial ligand for the hepatocyte-specific asialoglycoprotein receptor for the purpose of generating a synthetic delivery system for DNA. This ligand has a tetra-antennary structure, containing four terminal galactose residues on a branched carrier peptide. The carbohydrate residues of this glycopeptide were introduced by reductive coupling of lactose to the alpha- and epsilon-amino groups of the two N-terminal lysines on the carrier peptide. The C-terminus of the peptide, containing a cysteine separated from the branched N-terminus by a 10 amino acid spacer sequence, was used for conjugation to 3-(2-pyridyldithio)propionate-modified polylysine via disulfide bond formation. Complexes containing plasmid DNA bound to these galactose-polylysine conjugates have been used for asialoglycoprotein receptor-mediated transfer of a luciferase gene into human (HepG2) and murine (BNL CL.2) hepatocyte cell lines. Gene transfer was strongly promoted when amphipathic peptides with pH-controlled membrane-disruption activity, derived from the N-terminal sequence of influenza virus hemagglutinin HA-2, were also present in these DNA complexes. Thus, we have essentially borrowed the small functional domains of two large proteins, asialoglycoprotein and hemagglutinin, and assembled them into a supramolecular complex to generate an efficient gene-transfer system
    corecore