4,661 research outputs found

    New York Extends Welcome to The Federation of Catholic Physicians\u27 Guilds

    Get PDF

    The Philosophy of the Wagner Act of 1935

    Get PDF

    Private Options to Use Public Goods Exploiting Revealed Preferences to Estimate Environmental Benefits

    Get PDF
    We develop and apply a new method for estimating the economic benefits of an environmental amenity. The method fits within the household production framework (Becker 1965), and is based upon the notion of estimating the derived demand for a privately traded option to utilize a freely-available public good. In particular, the demand for state fishing licenses is used to infer the benefits of recreational fishing. Using panel data on state fishing license sales and prices for the continental United States over a fifteen-year period, combined with data on substitute prices and demographic variables, a license demand function is estimated with instrumental variable procedures to allow for the potential endogeneity of administered prices. The econometric results lead to estimates of the benefits of a fishing license, and subsequently to the expected benefits of a recreational fishing day. In contrast with previous studies, which have utilized travel cost or hypothetical market methods, our approach provides estimates that are directly comparable across geographic areas. Further, our results suggest that the benefits of recreational fishing days are generally less than previously estimated.Private Options, Public Goods, Environmental Benefits

    The History of the Department of Photography & Cinema of The Ohio State University

    Get PDF
    Prepared for the Centennial of The Ohio State University

    Theoretical/experimental Comparison of Deep Tunneling Decay of Quasi-bound H(D)OCO to H(D) + CO₂

    Get PDF
    The measured H(D)OCO survival fractions of the photoelectron-photofragment coincidence experiments by the Continetti group are qualitatively reproduced by tunneling calculations to H(D) + CO2 on several recent ab initio potential energy surfaces for the HOCO system. the tunneling calculations involve effective one-dimensional barriers based on steepest descent paths computed on each potential energy surface. the resulting tunneling probabilities are converted into H(D)OCO survival fractions using a model developed by the Continetti group in which every oscillation of the H(D)-OCO stretch provides an opportunity to tunnel. Four different potential energy surfaces are examined with the best qualitative agreement with experiment occurring for the PIP-NN surface based on UCCSD(T)-F12a/AVTZ electronic structure calculations and also a partial surface constructed for this study based on CASPT2/AVDZ electronic structure calculations. These two surfaces differ in barrier height by 1.6 kcal/mol but when matched at the saddle point have an almost identical shape along their reaction paths. the PIP surface is a less accurate fit to a smaller ab initio data set than that used for PIP-NN and its computed survival fractions are somewhat inferior to PIP-NN. the LTSH potential energy surface is the oldest surface examined and is qualitatively incompatible with experiment. This surface also has a small discontinuity that is easily repaired. on each surface, four different approximate tunneling methods are compared but only the small curvature tunneling method and the improved semiclassical transition state method produce useful results on all four surfaces. the results of these two methods are generally comparable and in qualitative agreement with experiment on the PIP-NN and CASPT2 surfaces. the original semiclassical transition state theory method produces qualitatively incorrect tunneling probabilities on all surfaces except the PIP. the Eckart tunneling method uses the least amount of information about the reaction path and produces too high a tunneling probability on PIP-NN surface, leading to survival fractions that peak at half their measured values

    System and method to assess signal similarity with applications to diagnostics and prognostics

    Get PDF
    Signal processing technology for assessing dynamic system similarity for fault detection and other applications is based on time- and frequency-domain time series analysis techniques and compares the entire autocorrelation structure of a test and reference signal series. The test and reference signals are first subjected to similar pre-processing to help guarantee signal stationarity. Pre-processing may include formation of multivariate signal clusters, filtering and sampling. Multivariate periodograms or autocovariance functions are then calculated for each signal series. Test statistics are computed and assessed to determine the equality of the test and reference signals. When the difference between sample autocovariance functions or periodograms of such signals exceeds a preselected threshold value, fault detection signals and/or related diagnostic information are provided as output to a user

    Classifier design for computerĂą aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135032/1/mp8805.pd

    Efficient Biocatalytic Synthesis of Dihalogenated Purine Nucleoside Analogues Applying Thermodynamic Calculations

    Get PDF
    The enzymatic synthesis of nucleoside analogues has been shown to be a sustainable and efficient alternative to chemical synthesis routes. In this study, dihalogenated nucleoside analogues were produced by thermostable nucleoside phosphorylases in transglycosylation reactions using uridine or thymidine as sugar donors. Prior to the enzymatic process, ideal maximum product yields were calculated after the determination of equilibrium constants through monitoring the equilibrium conversion in analytical-scale reactions. Equilibrium constants for dihalogenated nucleosides were comparable to known purine nucleosides, ranging between 0.071 and 0.081. To achieve 90% product yield in the enzymatic process, an approximately five-fold excess of sugar donor was needed. Nucleoside analogues were purified by semi-preparative HPLC, and yields of purified product were approximately 50% for all target compounds. To evaluate the impact of halogen atoms in positions 2 and 6 on the antiproliferative activity in leukemic cell lines, the cytotoxic potential of dihalogenated nucleoside analogues was studied in the leukemic cell line HL-60. Interestingly, the inhibition of HL-60 cells with dihalogenated nucleoside analogues was substantially lower than with monohalogenated cladribine, which is known to show high antiproliferative activity. Taken together, we demonstrate that thermodynamic calculations and small-scale experiments can be used to produce nucleoside analogues with high yields and purity on larger scales. The procedure can be used for the generation of new libraries of nucleoside analogues for screening experiments or to replace the chemical synthesis routes of marketed nucleoside drugs by enzymatic processes.DFG, 390540038, EXC 2008: UniSysCatDFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische UniversitÀt Berli

    Effect of sieving and isopropanol on the fluidization behavior of TiO2 nanoparticles

    Get PDF
    The fluidization of ABF nanoparticles has gained the attention of many researchers due to its interesting applications but difficult fluidization. Typically, these particles are sieved to remove the large agglomerates that are formed during storage. Otherwise, the larger agglomerates stay near the distributor plate, hindering the proper fluidization of the nanoparticles due to the formation of channels throughout the bed. To solve that, several papers propose to improve the fluidization conditions using external assistance methods. Such methods impose an external force that can break up the agglomerates; examples are magnetic or electric fields, vibration or centrifugal beds [1]. A different approach is to change the surface properties of the nanoparticles, decreasing the cohesive forces. Tahmasebpooret al. [2] analysed the influence of the hydrogen bonds during the fluidization of nanoparticles. They showed that the use of isopropanol vapour (ISP) in the fluidizing gas can reduce the cohesive forces between nanoparticles increasing the bed aspect ratio. Sieving of nanoparticles and the use of ISP in the gas stream have been commonly used to improve the fluidization quality during the last years. However, the influence of both processes on the fluidization behaviour has not been studied in detail. For the former, the effect of the sieving size on the bed dynamics is still unknown. Regarding the ISP, its influence for long fluidization times has not been addressed yet. For instance, whether the ISP should be continuously on the gas stream or working with gas pulses to improve the fluidization has not been clarified. Therefore, the objective of this experimental work is to further understand the influence of the sieving size and the effect of ISP during the fluidization of TiO2 nanoparticles. The experiments are carried out in a 5 cm inner diameter column with a porous distributor. Nitrogen is used as fluidizing gas. The experiments are analysed using a 2D tomography setup. The attenuation of the X-rays are measured when they go through the fluidized by a plate detector, with a size of 30 cm x 30 cm and 1524x1548 pixels. The fluidization of TiO2 nanoparticles sieved with a 350 ”m mesh shows higher bed expansion than the powder sieved with a 850 ”m mesh. Considering the effect of time, the use of ISP initially increases the bed expansion, but after that the bed height decreases faster than for the situation without ISP. Please click Additional Files below to see the full abstract
    • 

    corecore