48,718 research outputs found

    Thermostating by Deterministic Scattering: Heat and Shear Flow

    Full text link
    We apply a recently proposed novel thermostating mechanism to an interacting many-particle system where the bulk particles are moving according to Hamiltonian dynamics. At the boundaries the system is thermalized by deterministic and time-reversible scattering. We show how this scattering mechanism can be related to stochastic boundary conditions. We subsequently simulate nonequilibrium steady states associated to thermal conduction and shear flow for a hard disk fluid. The bulk behavior of the model is studied by comparing the transport coefficients obtained from computer simulations to theoretical results. Furthermore, thermodynamic entropy production and exponential phase-space contraction rates in the stationary nonequilibrium states are calculated showing that in general these quantities do not agree.Comment: 16 pages (revtex) with 9 figures (postscript

    A formal theory of cubical complexes Formal report, 1 Sep. 1968 - 30 Apr. 1969

    Get PDF
    Algorithm for computation of test failures in cyclic circuit

    Acoustic characteristics of externally blown flap systems with mixer nozzles

    Get PDF
    Noise tests were conducted on a large scale, cold flow model of an engine-under-the-wing externally blown flap lift augmentation system employing a mixer nozzle. The mixer nozzle was used to reduce the flap impingement velocity and, consequently, try to attenuate the additional noise caused by the interaction between the jet exhaust and the wing flap. Results from the mixer nozzle tests are summarized and compared with the results for a conical nozzle. The comparison showed that with the mixer nozzle, less noise was generated when the trailing flap was in a typical landing setting (e.g., 60 deg). However, for a takeoff flap setting (20 deg), there was little or no difference in the acoustic characteristics when either the mixer or conical nozzle was used

    Dynamics of mesoscopic precipitate lattices in phase separating alloys under external load

    Full text link
    We investigate, via three-dimensional atomistic computer simulations, phase separation in an alloy under external load. A regular two-dimensional array of cylindrical precipitates, forming a mesoscopic precipitate lattice, evolves in the case of applied tensile stress by the movement of mesoscopic lattice defects. A striking similarity to ordinary crystals is found in the movement of "meso-dislocations", but new mechanisms are also observed. Point defects such as "meso-vacancies" or "meso-interstitials" are created or annihilated locally by merging and splitting of precipitates. When the system is subjected to compressive stress, we observe stacking faults in the mesoscopic one-dimensional array of plate-like precipitates.Comment: 4 pages, 4 figures, REVTE
    • …
    corecore