7,231 research outputs found

    Deformation and fracture of thin sheet aluminum-lithium alloys: The effect of cryogenic temperatures

    Get PDF
    The objective is to characterize the fracture behavior and to define the fracture mechanisms for new Al-Li-Cu alloys, with emphasis on the role of indium additions and cryogenic temperatures. Three alloys were investigated in rolled product form: 2090 baseline and 2090 + indium produced by Reynolds Metals, and commercial AA 2090-T81 produced by Alcoa. The experimental 2090 + In alloy exhibited increases in hardness and ultimate strength, but no change in tensile yield strength, compared to the baseline 2090 composition in the unstretched T6 condition. The reason for this behavior is not understood. Based on hardness and preliminary Kahn Tear fracture experiments, a nominally peak-aged condition was employed for detailed fracture studies. Crack initiation and growth fracture toughness were examined as a function of stress state and microstructure using J(delta a) methods applied to precracked compact tension specimens in the LT orientation. To date, J(delta a) experiments have been limited to 23 C. Alcoa 2090-T81 exhibited the highest toughness regardless of stress state. Fracture was accompanied by extensive delamination associated with high angle grain boundaries normal to the fatigue precrack surface and progressed microscopically by a transgranular shear mechanism. In contrast the two peak-aged Reynolds alloys had lower toughness and fracture was intersubgranular without substantial delamination. The influences of cryogenic temperature, microstructure, boundary precipitate structure, and deformation mode in governing the competing fracture mechanisms will be determined in future experiments. Results contribute to the development of predictive micromechanical models for fracture modes in Al-Li alloys, and to fracture resistant materials

    Superplastic forming of Al-Li alloys for lightweight, low-cost structures

    Get PDF
    Superplastic forming of advanced aluminum alloys is being evaluated as an approach for fabricating low-cost, light-weight, cryogenic propellant tanks. Built-up structure concepts (with inherent reduced scrap rate) are under investigation to offset the additional raw material expenses incurred by using aluminum lithium alloys. This approach to fabrication offers the potential for significant improvements in both structural efficiency and overall manufacturing costs. Superplasticity is the ability of specially processed material to sustain very large forming strains without failure at elevated temperatures under controlled deformation conditions. It was demonstrated that superplastic forming technology can be used to fabricate complex structural components in a single operation and increase structural efficiency by as much as 60 percent compared to conventional configurations in skin-stiffened structures. Details involved in the application of this technology to commercial grade superplastic aluminum lithium material are presented. Included are identification of optimum forming parameters, development of forming procedures, and assessment of final part quality in terms of cavitation volume and thickness variation

    So you want to run an experiment, now what? Some Simple Rules of Thumb for Optimal Experimental Design

    Get PDF
    Experimental economics represents a strong growth industry. In the past several decades the method has expanded beyond intellectual curiosity, now meriting consideration alongside the other more traditional empirical approaches used in economics. Accompanying this growth is an influx of new experimenters who are in need of straightforward direction to make their designs more powerful. This study provides several simple rules of thumb that researchers can apply to improve the efficiency of their experimental designs. We buttress these points by including empirical examples from the literature.

    Simulation at Dryden Flight Research Facility from 1957 to 1982

    Get PDF
    The Dryden Flight Research Facility has been a leader in developing simulation as an integral part of flight test research. The history of that effort is reviewed, starting in 1957 and continuing to the present time. The contributions of the major program activities conducted at Dryden during this 25-year period to the development of a simulation philosophy and capability is explained

    Ionic Capillary Evaporation in Weakly Charged Nanopores

    Full text link
    Using a variational field theory, we show that an electrolyte confined to a neutral cylindrical nanopore traversing a low dielectric membrane exhibits a first-order ionic liquid-vapor pseudo-phase-transition from an ionic-penetration "liquid" phase to an ionic-exclusion "vapor" phase, controlled by nanopore-modified ionic correlations and dielectric repulsion. For weakly charged nanopores, this pseudotransition survives and may shed light on the mechanism behind the rapid switching of nanopore conductivity observed in experiments.Comment: This version is accepted for publication in PR

    Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud

    Get PDF
    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially-extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (∼3×10−26cm3s−1\sim 3\times10^{-26}{\rm cm}^{3}{\rm s}^{-1}) for dark matter masses ≲30\lesssim 30 GeV annihilating via the bbˉb \bar b or τ+τ−\tau^{+}\tau^{-} channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.Comment: 7 pages, 5 figures. Published in Ap

    Aminoglycoside effects on voltage-sensitive calcium channels and neurotoxicity

    Get PDF
    Journal ArticleTo the Editor: Since ototoxicity and neuromuscular toxicity of aminoglycoside antibiotics are reversed by calcium, 1,2 and presynaptic events appear to be involved in aminoglycoside-induced neuromuscular blockade, 3,4 we suspected a role for voltage-sensitive calcium channels in aminoglycoside neurotoxicity

    Myosin V and the endoplasmic reticulum: the connection grows

    Get PDF
    In this issue, Estrada et al. (2003) provide new and important insights into how the endoplasmic reticulum (ER) of budding yeast cells is inherited. Together with other studies in plant and animal cells, the results of Estrada et al. (2003) support the idea that myosin V acts as a universal motor for the transport of ER membranes

    Basic Skills in Adult Education and the Digital Divide

    Get PDF
    Traditionally, basic adult education has had a particular concern with the skills of literacy and numeracy, seeing these as essential for entry to the world of work. Adult education teachers may therefore be reluctant to adopt ICT, unsure of the part it should play, and worried about the time it takes away from the development of these basic skills. As we enter the 21st century, however, ICT has already become a necessary and important component of adult education. Formal and non-formal education are being delivered at a distance via technology — particularly the Internet — with the promise that learning can take place at any time and in any place
    • …
    corecore