2,427 research outputs found

    Hip MRI in flexion abduction external rotation for assessment of the ischiofemoral interval in patients with hip pain-a feasibility study.

    Get PDF
    OBJECTIVES To assess the feasibility of flexion-abduction-external rotation (FABER) magnetic resonance imaging (MRI) of the hip to visualize changes in the ischiofemoral interval and ability to provoke foveal excursion over the acetabular rim. METHODS IRB-approved retrospective single-center study. Patients underwent non-contrast 1.5-T hip MRI in the neutral and FABER position. Two readers measured the ischiofemoral interval at three levels: proximal/distal intertrochanteric distance and ischiofemoral space. Subgroup analysis was performed for hips with/without high femoral torsion, or quadratus femoris muscle edema (QFME), respectively. A receiver operating curve with calculation of the area under the curve (AUC) for the prediction of QFME was calculated. The presence of foveal excursion in both positions was assessed. RESULTS One hundred ten patients (121 hips, mean age 34 ± 11 years, 67 females) were evaluated. FABER-MRI led to narrowing (both p < .001) of the ischiofemoral interval which decreased more at the proximal (mean decrease by 26 ± 7 mm) than at the distal (6 ± 7 mm) intertrochanteric ridge. With high femoral torsion/ QFME, the ischiofemoral interval was significantly narrower at all three measurement locations compared to normal torsion/no QFME (p < .05). Accuracy for predicting QFME was high with an AUC of .89 (95% CI .82-.94) using a threshold of ≤ 7 mm for the proximal intertrochanteric distance. With FABER-MRI foveal excursion was more frequent in hips with QFME (63% vs 25%; p = .021). CONCLUSION Hip MRI in the FABER position is feasible, visualizes narrowing of the ischiofemoral interval, and can provoke foveal excursion. CRITICAL RELEVANCE STATEMENT FABER MRI may be helpful in diagnosing ischiofemoral impingement and detecting concomitant hip instability by overcoming shortcomings of static MR protocols that do not allow visualization of dynamic changes in the ischiofemoral interval and thus may improve surgical decision making. KEY POINTS • FABER MRI enables visualization of narrowing of the ischiofemoral interval proximal to the lesser trochanter. • Proximal intertrochanteric distance of ≤ 7 mm accurately predicts quadratus femoris muscle edema. • Foveal excursion was more frequent in hips with quadratus femoris muscle edema

    Crystal structure of the Na+/H+ antiporter NhaA at active pH reveals the mechanistic basis for pH sensing.

    Get PDF
    The strict exchange of protons for sodium ions across cell membranes by Na+/H+ exchangers is a fundamental mechanism for cell homeostasis. At active pH, Na+/H+ exchange can be modelled as competition between H+ and Na+ to an ion-binding site, harbouring either one or two aspartic-acid residues. Nevertheless, extensive analysis on the model Na+/H+ antiporter NhaA from Escherichia coli, has shown that residues on the cytoplasmic surface, termed the pH sensor, shifts the pH at which NhaA becomes active. It was unclear how to incorporate the pH senor model into an alternating-access mechanism based on the NhaA structure at inactive pH 4. Here, we report the crystal structure of NhaA at active pH 6.5, and to an improved resolution of 2.2 Å. We show that at pH 6.5, residues in the pH sensor rearrange to form new salt-bridge interactions involving key histidine residues that widen the inward-facing cavity. What we now refer to as a pH gate, triggers a conformational change that enables water and Na+ to access the ion-binding site, as supported by molecular dynamics (MD) simulations. Our work highlights a unique, channel-like switch prior to substrate translocation in a secondary-active transporter

    Prediction of lethal and synthetically lethal knock-outs in regulatory networks

    Full text link
    The complex interactions involved in regulation of a cell's function are captured by its interaction graph. More often than not, detailed knowledge about enhancing or suppressive regulatory influences and cooperative effects is lacking and merely the presence or absence of directed interactions is known. Here we investigate to which extent such reduced information allows to forecast the effect of a knock-out or a combination of knock-outs. Specifically we ask in how far the lethality of eliminating nodes may be predicted by their network centrality, such as degree and betweenness, without knowing the function of the system. The function is taken as the ability to reproduce a fixed point under a discrete Boolean dynamics. We investigate two types of stochastically generated networks: fully random networks and structures grown with a mechanism of node duplication and subsequent divergence of interactions. On all networks we find that the out-degree is a good predictor of the lethality of a single node knock-out. For knock-outs of node pairs, the fraction of successors shared between the two knocked-out nodes (out-overlap) is a good predictor of synthetic lethality. Out-degree and out-overlap are locally defined and computationally simple centrality measures that provide a predictive power close to the optimal predictor.Comment: published version, 10 pages, 6 figures, 2 tables; supplement at http://www.bioinf.uni-leipzig.de/publications/supplements/11-01

    Are degenerative findings detected on traction MR arthrography of the hip associated with failure of arthroscopic femoroacetabular impingement surgery?

    Get PDF
    OBJECTIVES To identify preoperative degenerative features on traction MR arthrography associated with failure after arthroscopic femoroacetabular impingement (FAI) surgery. METHODS Retrospective study including 102 patients (107 hips) undergoing traction magnetic resonance arthrography (MRA) of the hip at 1.5 T and subsequent hip arthroscopic FAI surgery performed (01/2016 to 02/2020) with complete follow-up. Clinical outcomes were assessed using the International Hip Outcome Tool (iHOT-12) score. Clinical endpoint for failure was defined as an iHOT-12 of < 60 points or conversion to total hip arthroplasty. MR images were assessed by two radiologists for presence of 9 degenerative lesions including osseous, chondrolabral/ligamentum teres lesions. Uni- and multivariate Cox regression analysis was performed to assess the association between MRI findings and failure of FAI surgery. RESULTS Of the 107 hips, 27 hips (25%) met at least one endpoint at a mean 3.7 ± 0.9 years follow-up. Osteophytic changes of femur or acetabulum (hazard ratio [HR] 2.5-5.0), acetabular cysts (HR 3.4) and extensive cartilage (HR 5.1) and labral damage (HR 5.5) > 2 h on the clockface were univariate risk factors (all p  2 h on the clockface (HR 3.2, p = 0.01), central femoral osteophyte (HR 3.1, p = 0.02), and femoral cartilage damage with ligamentum teres damage (HR 3.0, p = 0.04). CONCLUSION Joint damage detected by preoperative traction MRA is associated with failure 4 years following arthroscopic FAI surgery and yields promise in preoperative risk stratification. CLINICAL RELEVANCE STATEMENT Evaluation of negative predictors on preoperative traction MR arthrography holds the potential to improve risk stratification based on the already present joint degeneration ahead of FAI surgery. KEY POINTS • Osteophytes, acetabular cysts, and extensive chondrolabral damage are risk factors for failure of FAI surgery. • Extensive acetabular cartilage damage, central femoral osteophytes, and combined femoral cartilage and ligamentum teres damage represent independent negative predictors. • Survival rates following hip arthroscopy progressively decrease with increasing prevalence of these three degenerative findings

    Safety Profile of a Virus-Like Particle-Based Vaccine Targeting Self-Protein Interleukin-5 in Horses

    Get PDF
    Background: Insect bite hypersensitivity (IBH) is an eosinophilic allergic dermatitis of horses caused by type I/IVb reactions against mainly Culicoides bites. The vaccination of IBH-affected horses with equine IL-5 coupled to the Cucumber mosaic virus-like particle (eIL-5-CuMVTT) induces IL-5-specific auto-antibodies, resulting in a significant reduction in eosinophil levels in blood and clinical signs. Objective: the preclinical and clinical safety of the eIL-5-CuMVTT vaccine. Methods: The B cell responses were assessed by longitudinal measurement of IL-5- and CuMVTT-specific IgG in the serum and plasma of vaccinated and unvaccinated horses. Further, peripheral blood mononuclear cells (PBMCs) from the same horses were re-stimulated in vitro for the proliferation and IFN-Îł production of specific T cells. In addition, we evaluated longitudinal kidney and liver parameters and the general blood status. An endogenous protein challenge was performed in murine IL-5-vaccinated mice. Results: The vaccine was well tolerated as assessed by serum and cellular biomarkers and also induced reversible and neutralizing antibody titers in horses and mice. Endogenous IL-5 stimulation was unable to re-induce anti-IL-5 production. The CD4+ T cells of vaccinated horses produced significantly more IFN-Îł and showed a stronger proliferation following stimulation with CuMVTT as compared to the unvaccinated controls. Re-stimulation using E. coli-derived proteins induced low levels of IFNÎł+CD4+ cells in vaccinated horses; however, no IFN-Îł and proliferation were induced following the HEK-eIL-5 re-stimulation. Conclusions: Vaccination using eIL-5-CuMVTT induces a strong B-cell as well as CuMVTT-specific T cell response without the induction of IL-5-specific T cell responses. Hence, B-cell unresponsiveness against self-IL-5 can be bypassed by inducing CuMVTT carrier-specific T cells, making the vaccine a safe therapeutic option for IBH-affected horses
    • …
    corecore