5,233 research outputs found

    Impact and Recovery Process of Mini Flash Crashes: An Empirical Study

    Full text link
    In an Ultrafast Extreme Event (or Mini Flash Crash), the price of a traded stock increases or decreases strongly within milliseconds. We present a detailed study of Ultrafast Extreme Events in stock market data. In contrast to popular belief, our analysis suggests that most of the Ultrafast Extreme Events are not primarily due to High Frequency Trading. In at least 60 percent of the observed Ultrafast Extreme Events, the main cause for the events are large market orders. In times of financial crisis, large market orders are more likely which can be linked to the significant increase of Ultrafast Extreme Events occurrences. Furthermore, we analyze the 100 trades following each Ultrafast Extreme Events. While we observe a tendency of the prices to partially recover, less than 40 percent recover completely. On the other hand we find 25 percent of the Ultrafast Extreme Events to be almost recovered after only one trade which differs from the usually found price impact of market orders

    The RR_\infty property for nilpotent quotients of generalized solvable Baumslag-Solitar groups

    Full text link
    We say a group GG has property RR_\infty if the number R(φ)R(\varphi) of twisted conjugacy classes is infinite for every automorphism φ\varphi of GG. For such groups, the RR_\infty-nilpotency degree is the least integer cc such that G/γc+1(G)G/\gamma_{c+1}(G) has property RR_\infty. In this work, we compute the RR_\infty-nilpotency degree of all Generalized Solvable Baumslag-Solitar groups Γn\Gamma_n. Moreover, we compute the lower central series of Γn\Gamma_n, write the nilpotent quotients Γn,c=Γn/γc+1(Γn)\Gamma_{n,c}=\Gamma_n/\gamma_{c+1}(\Gamma_n) as semidirect products of finitely generated abelian groups and classify which integer invertible matrices can be extended to automorphisms of Γn,c\Gamma_{n,c}.Comment: 11 page

    Symmetric Edit Lenses: A New Foundation for Bidirectional Languages

    Get PDF
    Lenses are bidirectional transformations between pairs of connected structures capable of translating an edit on one structure into an edit on the other. Most of the extensive existing work on lenses has focused on the special case of asymmetric lenses, where one structures is taken as primary and the other is thought of as a projection or view. Some symmetric variants exist, where each structure contains information not present in the other, but these all lack the basic operation of composition. Additionally, existing accounts do not represent edits carefully, making incremental operation difficult or producing unsatisfactory synchronization candidates. We present a new symmetric formulation which works with descriptions of changes to structures, rather than with the structures themselves. We construct a semantic space of edit lenses between “editable structures”—monoids of edits with a partial monoid action for applying edits—with natural laws governing their behavior. We present generalizations of a number of known constructions on asymmetric lenses and settle some longstanding questions about their properties—in particular, we prove the existence of (symmetric monoidal) tensor products and sums and the non-existence of full categorical products and sums in a category of lenses. Universal algebra shows how to build iterator lenses for structured data such as lists and trees, yielding lenses for operations like mapping, filtering, and concatenation from first principles. More generally, we provide mapping combinators based on the theory of containers. Finally, we present a prototype implementation of the core theory and take a first step in addressing the challenge of translating between user gestures and the internal representation of edits

    SUMO (Simulation of Urban MObility) - an open-source traffic simulation

    Get PDF
    As no exact model of traffic flow exists due to its high complexity and chaotic organisation, researchers mainly try to predict traffic using simulations. Within this field, many simulation packages exist and differ in their software architecture paradigm as well as in the models that describe traffic itself. We will introduce yet another system which, in contrast to most of the other simulation software packages, is available as on open-source programm and may therfore be extended in order to fit a researcher´s own needs and also be used as a reference testbed for new traffic models

    Single-Cell Analysis Reveals Functionally Distinct Classes within the Planarian Stem Cell Compartment

    Get PDF
    Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear. Here, we used high-dimensional single-cell transcriptional profiling from over a thousand individual neoblasts to directly compare gene expression fingerprints during homeostasis and regeneration. We identified two prominent neoblast classes that we named ζ (zeta) and σ (sigma). Zeta-neoblasts encompass specified cells that give rise to an abundant postmitotic lineage including epidermal cells, and are not required for regeneration. By contrast, sigma-neoblasts proliferate in response to injury, possess broad lineage capacity, and can give rise to zeta-neoblasts. These findings present a new view of planarian neoblasts, in which the population is comprised of two major and functionally distinct cellular compartments.Human Frontier Science Program (Strasbourg, France)National Institutes of Health (U.S.) (Grant R01GM080639

    A new population of recently quenched elliptical galaxies in the SDSS

    Full text link
    We use the Sloan Digital Sky Survey to investigate the properties of massive elliptical galaxies in the local Universe (z\leq0.08) that have unusually blue optical colors. Through careful inspection, we distinguish elliptical from non-elliptical morphologies among a large sample of similarly blue galaxies with high central light concentrations (c_r\geq2.6). These blue ellipticals comprise 3.7 per cent of all c_r\geq2.6 galaxies with stellar masses between 10^10 and 10^11 h^{-2} {\rm M}_{\sun}. Using published fiber spectra diagnostics, we identify a unique subset of 172 non-star-forming ellipticals with distinctly blue urz colors and young (< 3 Gyr) light-weighted stellar ages. These recently quenched ellipticals (RQEs) have a number density of 2.7-4.7\times 10^{-5}\,h^3\,{\rm Mpc}^{-3} and sufficient numbers above 2.5\times10^{10} h^{-2} {\rm M}_{\sun} to account for more than half of the expected quiescent growth at late cosmic time assuming this phase lasts 0.5 Gyr. RQEs have properties that are consistent with a recent merger origin (i.e., they are strong `first-generation' elliptical candidates), yet few involved a starburst strong enough to produce an E+A signature. The preferred environment of RQEs (90 per cent reside at the centers of < 3\times 10^{12}\,h^{-1}{\rm M}_{\sun} groups) agrees well with the `small group scale' predicted for maximally efficient spiral merging onto their halo center and rules out satellite-specific quenching processes. The high incidence of Seyfert and LINER activity in RQEs and their plausible descendents may heat the atmospheres of small host halos sufficiently to maintain quenching.Comment: 26 pages, 9 figures. Revised version; accepted for publication in MNRA

    Disputatio on the Distinction between the Human Person and Other Animals: the Human Person as Gardener

    Get PDF
    While the Catholic intellectual tradition upholds the uniqueness of humans, much contemporary scientific research has come to the opposing conclusion that humans are not significantly different from other animals. To engage in robust dialogue around the question of human uniqueness, we utilize Aquinas’s model of disputatio to focus on an attribute of human beings that is unexplored in the literature – namely, the human capacity to garden – and address five scientific and philosophical objections to our position that the capacity to garden makes humans distinct. Engaging with various branches of science, we demonstrate that human capacities and modes of gardening are not only incrementally different, but also fundamentally different in kind, from those of nonhuman creatures. Philosophically, we utilize the power-object model of division and Aristotle’s categorization of knowledge to express the difference in kind between human beings and other animals. These responses allow us to set aside each major objection

    Extension of the fuzzy integral for general fuzzy set-valued information

    Get PDF
    The fuzzy integral (FI) is an extremely flexible aggregation operator. It is used in numerous applications, such as image processing, multicriteria decision making, skeletal age-at-death estimation, and multisource (e.g., feature, algorithm, sensor, and confidence) fusion. To date, a few works have appeared on the topic of generalizing Sugeno's original real-valued integrand and fuzzy measure (FM) for the case of higher order uncertain information (both integrand and measure). For the most part, these extensions are motivated by, and are consistent with, Zadeh's extension principle (EP). Namely, existing extensions focus on fuzzy number (FN), i.e., convex and normal fuzzy set- (FS) valued integrands. Herein, we put forth a new definition, called the generalized FI (gFI), and efficient algorithm for calculation for FS-valued integrands. In addition, we compare the gFI, numerically and theoretically, with our non-EP-based FI extension called the nondirect FI (NDFI). Examples are investigated in the areas of skeletal age-at-death estimation in forensic anthropology and multisource fusion. These applications help demonstrate the need and benefit of the proposed work. In particular, we show there is not one supreme technique. Instead, multiple extensions are of benefit in different contexts and applications
    corecore