2,794 research outputs found

    Genetic diseases of renal phosphate handling

    Get PDF
    UNLABELLED: Renal control of systemic phosphate homeostasis is critical as evident from inborn and acquired diseases causing renal phosphate wasting. At least three transport proteins are responsible for renal phosphate reabsorption: NAPI-IIa (SLC34A1), NAPI-IIc (SLC34A3) and PIT-2 (SLC20A2). These transporters are highly regulated by various cellular mechanisms and factors including acid-base status, electrolyte balance and hormones such as dopamine, glucocorticoids, growth factors, vitamin D3, parathyroid hormone and fibroblast growth factor 23 (FGF23). Whether renal phosphate wasting is caused by inactivating mutations in the NAPI-IIa transporter is controversial. Mutations in the NAPI-IIc transporter cause hereditary hypophosphatemic rickets with hypercalciuria. Besides the primary inherited defects, there are also inherited defects in major regulators of phosphate homeostasis that lead to alterations in phosphate handling. Autosomal dominant hypophosphatemic rickets is due to FGF23 mutations leading to resistance against its own degradation. Similarly, inactivating mutations in the PHEX gene, which causes FGF23 inactivation, cause X-linked hypophosphatemia due to renal phosphate losses. In contrast, mutations in galactosamine:polypeptide N-acetyl-galactosaminyltransferase, responsible for O-glycosylation of FGF23, or in klotho, a cofactor for FGF23 signalling result in hyperphosphatemia. Acquired syndromes of renal phosphate wasting, hypophosphatemia and osteomalacia (tumour-associated osteomalacia) can be due to the excessive synthesis or release of phosphaturic factors (FGF23, FGF-7, MEPE and sFRP4) from mesenchymal tumour

    Genetic diseases of renal phosphate handling

    Get PDF
    UNLABELLED: Renal control of systemic phosphate homeostasis is critical as evident from inborn and acquired diseases causing renal phosphate wasting. At least three transport proteins are responsible for renal phosphate reabsorption: NAPI-IIa (SLC34A1), NAPI-IIc (SLC34A3) and PIT-2 (SLC20A2). These transporters are highly regulated by various cellular mechanisms and factors including acid-base status, electrolyte balance and hormones such as dopamine, glucocorticoids, growth factors, vitamin D3, parathyroid hormone and fibroblast growth factor 23 (FGF23). Whether renal phosphate wasting is caused by inactivating mutations in the NAPI-IIa transporter is controversial. Mutations in the NAPI-IIc transporter cause hereditary hypophosphatemic rickets with hypercalciuria. Besides the primary inherited defects, there are also inherited defects in major regulators of phosphate homeostasis that lead to alterations in phosphate handling. Autosomal dominant hypophosphatemic rickets is due to FGF23 mutations leading to resistance against its own degradation. Similarly, inactivating mutations in the PHEX gene, which causes FGF23 inactivation, cause X-linked hypophosphatemia due to renal phosphate losses. In contrast, mutations in galactosamine:polypeptide N-acetyl-galactosaminyltransferase, responsible for O-glycosylation of FGF23, or in klotho, a cofactor for FGF23 signalling result in hyperphosphatemia. Acquired syndromes of renal phosphate wasting, hypophosphatemia and osteomalacia (tumour-associated osteomalacia) can be due to the excessive synthesis or release of phosphaturic factors (FGF23, FGF-7, MEPE and sFRP4) from mesenchymal tumour

    Complicated pregnancies in inherited distal renal tubular acidosis: importance of acid-base balance

    Full text link
    Inherited distal renal tubular acidosis (dRTA) is caused by impaired urinary acid excretion resulting in hyperchloremic metabolic acidosis. Although the glomerular filtration rate (GFR) is usually preserved, and hypertension and overt proteinuria are absent, it has to be considered that patients with dRTA also suffer from chronic kidney disease (CKD) with an increased risk for adverse pregnancy-related outcomes. Typical complications of dRTA include severe hypokalemia leading to cardiac arrhythmias and paralysis, nephrolithiasis and nephrocalcinosis. Several physiologic changes occur in normal pregnancy including alterations in acid-base and electrolyte homeostasis as well as in GFR. However, data on pregnancy in women with inherited dRTA are scarce. We report the course of pregnancy in three women with hereditary dRTA. Complications observed were severe metabolic acidosis, profound hypokalemia aggravated by hyperemesis gravidarum, recurrent urinary tract infection (UTI) and ureteric obstruction leading to renal failure. However, the outcome of all five pregnancies (1 pregnancy each for mothers n. 1 and 2; 3 pregnancies for mother n. 3) was excellent due to timely interventions. Our findings highlight the importance of close nephrologic monitoring of women with inherited dRTA during pregnancy. In addition to routine assessment of creatinine and proteinuria, caregivers should especially focus on acid-base status, plasma potassium and urinary tract infections. Patients should be screened for renal obstruction in the case of typical symptoms, UTI or renal failure. Furthermore, genetic identification of the underlying mutation may (a) support early nephrologic referral during pregnancy and a better management of the affected woman, and (b) help to avoid delayed diagnosis and reduce complications in affected newborns

    Renal localization and regulation by dietary phosphate of the MCT14 orphan transporter

    Full text link
    MCT14 is an orphan transporter belonging to the SLC16 transporter family mediating the transport of monocarboxylates, aromatic amino acids, creatine, and thyroid hormones. The expression, tissue localization, regulation, and function of MCT14 are unknown. In mouse MCT14 mRNA abundance is highest in kidney. Using a newly developed and validated antibody, MCT14 was localized to the luminal membrane of the thick ascending limb of the loop of Henle colocalizing in the same cells with uromodulin and NKCC2. MCT14 mRNA and protein was found to be highly regulated by dietary phosphate intake in mice being increased by high dietary phosphate intake at both mRNA and protein level. In order to identify the transport substrate(s), we expressed MCT14 in Xenopus laevis oocytes where MCT14 was integrated into the plasma membrane. However, no transport was discovered for the classic substrates of the SLC16 family nor for phosphate. In summary, MCT14 is an orphan transporter regulated by phosphate and highly enriched in kidney localizing to the luminal membrane of one specific nephron segment

    Impaired expression of key molecules of ammoniagenesis underlies renal acidosis in a rat model of chronic kidney disease

    Get PDF
    Background Advanced chronic kidney disease (CKD) is associated with the development of renal metabolic acidosis. Metabolic acidosis per se may represent a trigger for progression of CKD. Renal acidosis of CKD is characterized by low urinary ammonium excretion with preserved urinary acidification indicating a defect in renal ammoniagenesis, ammonia excretion or both. The underlying molecular mechanisms, however, have not been addressed to date. Methods We examined the Han:SPRD rat model and used a combination of metabolic studies, mRNA and protein analysis of renal molecules involved in acid-base handling. Results We demonstrate that rats with reduced kidney function as evident from lower creatinine clearance, lower haematocrit, higher plasma blood urea nitrogen, creatinine, phosphate and potassium had metabolic acidosis that could be aggravated by HCl acid loading. Urinary ammonium excretion was highly reduced whereas urinary pH was more acidic in CKD compared with control animals. The abundance of key enzymes and transporters of proximal tubular ammoniagenesis (phosphate-dependent glutaminase, PEPCK and SNAT3) and bicarbonate transport (NBCe1) was reduced in CKD compared with control animals. In the collecting duct, normal expression of the B1 H+-ATPase subunit is in agreement with low urinary pH. In contrast, the RhCG ammonia transporter, critical for the final secretion of ammonia into urine was strongly down-regulated in CKD animals. Conclusion In the Han:SPRD rat model for CKD, key molecules required for renal ammoniagenesis and ammonia excretion are highly down-regulated providing a possible molecular explanation for the development and maintenance of renal acidosis in CKD patient

    The pathophysiology of distal renal tubular acidosis

    Get PDF
    The kidneys have a central role in the control of acid-base homeostasis owing to bicarbonate reabsorption and production of ammonia and ammonium in the proximal tubule and active acid secretion along the collecting duct. Impaired acid excretion by the collecting duct system causes distal renal tubular acidosis (dRTA), which is characterized by the failure to acidify urine below pH 5.5. This defect originates from reduced function of acid-secretory type A intercalated cells. Inherited forms of dRTA are caused by variants in SLC4A1, ATP6V1B1, ATP6V0A4, FOXI1, WDR72 and probably in other genes that are yet to be discovered. Inheritance of dRTA follows autosomal-dominant and -recessive patterns. Acquired forms of dRTA are caused by various types of autoimmune diseases or adverse effects of some drugs. Incomplete dRTA is frequently found in patients with and without kidney stone disease. These patients fail to appropriately acidify their urine when challenged, suggesting that incomplete dRTA may represent an intermediate state in the spectrum of the ability to excrete acids. Unrecognized or insufficiently treated dRTA can cause rickets and failure to thrive in children, osteomalacia in adults, nephrolithiasis and nephrocalcinosis. Electrolyte disorders are also often present and poorly controlled dRTA can increase the risk of developing chronic kidney disease

    Expression of phosphate and calcium transporters and their regulators in parotid glands of mice

    Full text link
    The concentration of inorganic phosphate (Pi) in plasma is under hormonal control, with deviations from normal values promptly corrected to avoid hyper- or hypophosphatemia. Major regulators include parathyroid hormone (PTH), fibroblast growth factor 23 (FGF-23), and active vitamin D3_{3} (calcitriol). This control is achieved by mechanisms largely dependent on regulating intestinal absorption and renal excretion, whose combined actions stabilise plasma Pi levels at around 1–2 mM. Instead, Pi concentrations up to 13 and 40 mM have been measured in saliva from humans and ruminants, respectively, suggesting that salivary glands have the capacity to concentrate Pi. Here we analysed the transcriptome of parotid glands, ileum, and kidneys of mice, to investigate their potential differences regarding the expression of genes responsible for epithelial transport of Pi as well as their known regulators. Given that Pi and Ca2+^{2+} homeostasis are tightly connected, the expression of genes involved in Ca2+^{2+} homeostasis was also included. In addition, we studied the effect of vitamin D3_{3} treatment on the expression of Pi and Ca2+^{2+} regulating genes in the three major salivary glands. We found that parotid glands are equipped preferentially with Slc20 rather than with Slc34 Na+^{+}/Pi cotransporters, are suited to transport Ca2+^{2+} through the transcellular and paracellular route and are potential targets for PTH and vitamin D3_{3} regulation

    Molecular Pathophysiology of Acid-Base Disorders

    Full text link
    Acid-base balance is critical for normal life. Acute and chronic disturbances impact cellular energy metabolism, endocrine signaling, ion channel activity, neuronal activity, and cardiovascular functions such as cardiac contractility and vascular blood flow. Maintenance and adaptation of acid-base homeostasis are mostly controlled by respiration and kidney. The kidney contributes to acid-base balance by reabsorbing filtered bicarbonate, regenerating bicarbonate through ammoniagenesis and generation of protons, and by excreting acid. This review focuses on acid-base disorders caused by renal processes, both inherited and acquired. Distinct rare inherited monogenic diseases affecting acid-base handling in the proximal tubule and collecting duct have been identified. In the proximal tubule, mutations of solute carrier 4A4 (SLC4A4) (electrogenic Na/HCO-cotransporter Na/bicarbonate cotransporter e1 [NBCe1]) and other genes such as CLCN5 (Cl/H-antiporter), SLC2A2 (GLUT2 glucose transporter), or EHHADH (enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase) causing more generalized proximal tubule dysfunction can cause proximal renal tubular acidosis resulting from bicarbonate wasting and reduced ammoniagenesis. Mutations in adenosine triphosphate ATP6V1 (B1 H-ATPase subunit), ATPV0A4 (a4 H-ATPase subunit), SLC4A1 (anion exchanger 1), and FOXI1 (forkhead transcription factor) cause distal renal tubular acidosis type I. Carbonic anhydrase II mutations affect several nephron segments and give rise to a mixed proximal and distal phenotype. Finally, mutations in genes affecting aldosterone synthesis, signaling, or downstream targets can lead to hyperkalemic variants of renal tubular acidosis (type IV). More common forms of renal acidosis are found in patients with advanced stages of chronic kidney disease and are owing, at least in part, to a reduced capacity for ammoniagenesis

    Perforin enhances the granulysin-induced lysis of Listeria innocua in human dendritic cells

    Get PDF
    Background: Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells play an essential role in the host defence against intracellular pathogens such as Listeria, and Mycobacteria. The key mediator of bacteria-directed cytotoxicity is granulysin, a 9 kDa protein stored in cytolytic granules together with perforin and granzymes. Granulysin binds to cell membranes and is subsequently taken up via a lipid raft-associated mechanism. In dendritic cells (DC) granulysin is further transferred via early endosomes to L. innocua-containing phagosomes were bacteriolysis is induced. In the present study we analysed the role of perforin in granulysin-induced intracellular bacteriolysis in DC. Results: We found granulysin-induced lysis of intracellular Listeria significantly increased when perforin was simultaneously present. In pulse-chase experiments enhanced bacteriolysis was observed when perforin was added up to 25 minutes after loading the cells with granulysin demonstrating no ultimate need for simultaneous uptake of granulysin and perforin. The perforin concentration sufficient to enhance granulysin-induced intracellular bacteriolysis did not cause permanent membrane pores in Listeria-challenged DC as shown by dye exclusion test and LDH release. This was in contrast to non challenged DC that were more susceptible to perforin lysis. For Listeria-challenged DC, there was clear evidence for an Ca2+ influx in response to sublytic perforin demonstrating a short-lived change in the plasma membrane permeability. Perforin treatment did not affect granulysin binding, initial uptake or intracellular trafficking to early endosomes. However, enhanced colocalization of granulysin with listerial DNA in presence of perforin was found by confocal laser scanning microscopy. Conclusion: The results provide evidence that perforin increases granulysin-mediated killing of intracellular Listeria by enhanced phagosome-endosome fusion triggered by a transient Ca2+ flux
    corecore