11 research outputs found

    Connection of EU-XFEL Cryomodules, Caps and Boxes in the EU-XFEL Main LINAC And Injector: Welding of Cryo-Pipes and Assembly of Beamline Absorbers under the Requirements of the PED Regulation

    No full text
    The European X-ray Free Electron Laser (EU-XFEL) [1] cold linac [2] consists of 100 assembled cryomodules, 6 feed/end boxes and 6 string connection boxes fixed to the ceiling of the accelerator tunnel; the injector consists of a radio frequency gun, one 1.3 GHz and one 3.9 GHz cryomodule, one feed and one end cap lying on ground supports. The components are connected together in the tunnel, after cold testing, transport, final positioning and alignment. The cold linac is a pressure equipment and is therefore subjected to the requirements of the Pressure Equipment Directive (PED). This paper describes the welding and subsequent Non-Destructive Testing (NDT) of the cryo-pipes (with a deeper look at the technical solutions adopted to satisfy the PED requirements), the assembly of the beam line absorbers and the final steps before closing the connection with a DN1000 bellows. A special paragraph will be dedicated to the connection of the injector components, where the lack of space makes this installation a particularly challenging task

    Twenty years of cryogenic operation of the FLASH superconducting linac

    No full text
    The FLASH superconducting linac operates at DESY since more than 20 years. Many changes and upgrades took place to transform a test stand for single cryomodules to a successful Free Electron Laser. We summarize here the main steps of the FLASH story from the cryogenic point of view including the latest major upgrade that took place in 2022.We also give an overview of cryomodule performances like cavity gradient and heat load performances and their evolution over the time

    Tunable and precise two-bunch generation at FLASHForward

    No full text
    Beam-driven plasma-wakefield acceleration based on external injection has the potential to significantly reduce the size of future accelerators. Stability and quality of the acceleration process substantially depends on the incoming bunch parameters. Precise control of the current profile is essential for optimising energy-transfer efficiency and preserving energy spread. At the FLASHForward facility, driver–witness bunch pairs of adjustable bunch length and separation are generated by a set of collimators in a dispersive section, which enables fs-level control of the longitudinal bunch profile. The design of the collimator apparatus and its commissioning is presented

    Tunable and precise two-bunch generation at FLASHForward

    No full text
    Beam-driven plasma-wakefield acceleration based on external injection has the potential to significantly reduce the size of future accelerators. Stability and quality of the acceleration process substantially depends on the incoming bunch parameters. Precise control of the current profile is essential for optimising energy-transfer efficiency and preserving energy spread. At the FLASHForward facility, driver--witness bunch pairs of adjustable bunch length and separation are generated by a set of collimators in a dispersive section, which enables fs-level control of the longitudinal bunch profile. The design of the collimator apparatus and its commissioning is presented

    Performance of participants and aggregation methods for 4 prediction tasks.

    No full text
    <p>Each panel corresponds to a different task, and shows the distribution of the tau distance measure of performance for all participants (stick figure people), the Thurstonian model (blue histograms) and summaries of the Thurstonian model (blue circles) and Borda count (yellow circles) aggregated rankings. The inserted scatter-plots show the relationship between the inferred expertise parameter and actual tau distance performance across all participants.</p

    Novel XX-band transverse deflection structure with variable polarization

    No full text
    A collaboration between DESY, PSI and CERN has developed and built an advanced modular XX-band transverse deflection structure (TDS) system with the new feature of providing variable polarization of the deflecting force. The prototype of the novel XX-band TDS, the polarizable XX-band (PolariX) TDS, was fabricated at PSI following the high-precision tuning-free production process developed for the C-band Linac of the SwissFEL project. Bead-pull rf measurements were also performed at PSI to verify, inparticular, that the polarization of the dipole fields does not have any rotation along the structure. The high-power test was performed at CERN and now the TDS is at DESY and has been installed in theFLASHForward beamline, where the first streaking experience with beam has been accomplished. We summarize in this paper the rf design of the TDS and its key components, such as the XX-band pulse compressor, E-rotator, and phase shifter, the results of the bead-pull measurements and the high power test and finally the rf setup at DESY

    The PolariX TDS Project: bead pull measurements and high power test on the prototype

    No full text
    A collaboration between DESY, PSI and CERN has been established to develop and build an advanced modular X- band transverse deflection structure (TDS) system with the new feature of providing variable polarization of the deflecting force. The prototype of the novel X-band TDS, the Polarizable X-band (PolariX) TDS, was fabricated at PSI following the high-precision tuning-free production process developed for the C-band Linac of the SwissFEL project. Bead-pull RF measurements were also performed at PSI to verify, in particular, that the polarization of the dipole fields does not have any rotation along the structure. The high-power test was performed at CERN and now the TDS is at DESY and has been installed in FLASHForward, where the first streaking experience with beam will be accomplished. We summarize in this paper the status of the project, the results of the bead-pull measurements and the high power test

    X-Band TDS Project

    No full text
    Based on the success of the X-Band Transverse Deflecting Structure (TDS) diagnostic at LCLS*, a collaboration between DESY, PSI and CERN has formed with the aim of developing and building an advanced modular X-Band TDS system. The designed TDS has the new feature of providing variable polarization of the deflecting field**. The possibility of changing the orientation of the streaking field of the TDS to an arbitrary azimuthal angle allows for 3D characterization of the phase space using tomographic methods***. Moreover the complete 6D characterization of the beam phase space is possible by combining this technique with quadrupole scans and a dipole spectrometer. As this new cavity design requires very high manufacturing precision to guarantee highest azimuthal symmetry of the structure to avoid the deterioration of the polarization of the streaking field, the high precision tuning-free assembly procedures developed at PSI for the SwissFEL C-band accelerating structures will be used for the manufacturing****. The high-power rf system is based on the CERN-based X-band test stands. We summarize in this work the status of the projects and its main technical parameters

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit
    corecore