367 research outputs found

    CO(1-0) line imaging of massive star-forming disc galaxies at z=1.5-2.2

    Get PDF
    We present detections of the CO(J= 1-0) emission line in a sample of four massive star-forming galaxies at z~1.5-2.2 obtained with the Karl G. Jansky Very Large Array (VLA). Combining these observations with previous CO(2-1) and CO(3-2) detections of these galaxies, we study the excitation properties of the molecular gas in our sample sources. We find an average line brightness temperature ratios of R_{21}=0.70+\-0.16 and R_{31}=0.50+\-0.29, based on measurements for three and two galaxies, respectively. These results provide additional support to previous indications of sub-thermal gas excitation for the CO(3-2) line with a typically assumed line ratio R_{31}~0.5. For one of our targets, BzK-21000, we present spatially resolved CO line maps. At the resolution of 0.18'' (1.5 kpc), most of the emission is resolved out except for some clumpy structure. From this, we attempt to identify molecular gas clumps in the data cube, finding 4 possible candidates. We estimate that <40 % of the molecular gas is confined to giant clumps (~1.5 kpc in size), and thus most of the gas could be distributed in small fainter clouds or in fairly diffuse extended regions of lower brightness temperatures than our sensitivity limit

    A new twist to an old story: HE 0450-2958, and the ULIRG→\to (optically bright QSO) transition hypothesis

    Full text link
    We report on interferometric imaging of the CO J=1--0 and J=3--2 line emission from the controversial QSO/galaxy pair HE 0450--2958. {\it The detected CO J=1--0 line emission is found associated with the disturbed companion galaxy not the luminous QSO,} and implies Mgal(H2)∼(1−2)×1010M⊙\rm M_{gal}(H_2)\sim (1-2)\times 10^{10} M_{\odot}, which is \ga 30% of the dynamical mass in its CO-luminous region. Fueled by this large gas reservoir this galaxy is the site of an intense starburst with SFR∼370M⊙yr−1\rm SFR\sim 370 M_{\odot} yr^{-1}, placing it firmly on the upper gas-rich/star-forming end of Ultra Luminous Infrared Galaxies (ULIRGs, LIR>1012L⊙\rm L_{IR}>10^{12} L_{\odot}). This makes HE 0450--2958 the first case of extreme starburst and powerful QSO activity, intimately linked (triggered by a strong interaction) but not coincident. The lack of CO emission towards the QSO itself renews the controversy regarding its host galaxy by making a gas-rich spiral (the typical host of Narrow Line Seyfert~1 AGNs) less likely. Finally, given that HE 0450--2958 and similar IR-warm QSOs are considered typical ULIRG→\to (optically bright QSO) transition candidates, our results raise the possibility that some may simply be {\it gas-rich/gas-poor (e.g. spiral/elliptical) galaxy interactions} which ``activate'' an optically bright unobscured QSO in the gas-poor galaxy, and a starburst in the gas-rich one. We argue that such interactions may have gone largely unnoticed even in the local Universe because the combination of tools necessary to disentagle the progenitors (high resolution and S/N optical {\it and} CO imaging) became available only recently.Comment: 25 pages, 5 figures, accepted for publication by The Astrophysical Journa

    Equivalent Force Control Combined with Adaptive Polynomial-based Forward Prediction for Real-time Hybrid Simulation

    Get PDF
    The equivalent force control method uses feedback control to replace numerical iteration and solve the nonlinear equation in a real-time hybrid simulation via the implicit integration method. During the real-time hybrid simulation, a time delay typically reduces the accuracy of the test results and can even make the system unstable. The outer-loop controller of the equivalent force control method can eliminate the effect of a small time delay. However, when the actuator has a large delay, the accuracy of the test results is reduced. The adaptive forward prediction method offers a solution to this problem. Thus, in this paper, the adaptive polynomial-based forward prediction algorithm is combined with equivalent force control to improve the test accuracy and stability. The new method is shown to give good stability properties for a specimen with nonlinear stiffness by analyzing the location of the poles of the discrete transfer system. Simulations with linear and nonlinear specimens are then presented to demonstrate the effectiveness of this method. Finally, experimental results with a linear stiffness specimen and a magneto-rheological (MR) damper are used to demonstrate that this method has better accuracy than the equivalent force control method with non-adaptive delay compensation

    Robust Aeroelastic Control of Very Flexible Wings using Intrinsic Models

    No full text
    This paper explores the robust control of large exible wings when their dynamics are written in terms of intrinsic variables, that is, velocities and stress resultants. Assuming 2-D strip theory for the aerodynamics, the resulting nonlinear aeroelastic equations of motion are written in modal coordinates. It is seen that a system which experiences large displacements can nonetheless be accurately described by a system with only weak nonlinear couplings in this description of the wing dynamics. As result, a linear robust controller acting on a control surface is able to effectively provide gust load alleviation and flutter suppression even when the wing structure undergoes large deformations. This is numerically demonstrated on various representative test cases. © 2013 by Yinan Wang, Andrew Wynn and Rafael Palacios

    The effects of parasitic mass on the performance of inerter-based dynamic vibration absorbers

    Get PDF
    This study investigates the effects of parasitic mass on the performance of inerter-based dynamic vibration absorbers (IDVAs). IDVAs have been increasingly employed to suppress vibrations in applications of civil engineering structures and vehicle suspension systems. While the masses of the components in a traditional dynamic vibration absorber can be easily compensated for due to its simple layout, the masses of the components in an IDVA can act as parasitic mass and might affect the performance of IDVAs. This can lead to the loss of benefits which is provided by the IDVAs. The negative effect of a parasitic mass in an IDVA can be observed in applications which have smaller inertance values. In such cases, it is important to consider masses of the components while selecting optimal parameters to maximize the performance improvement which can be obtained by an IDVA. In this study, a milling operation is modelled and its machining stability is increased by utilizing an IDVA. The negative effect of a parasitic mass on the performance is shown, and the performance improvement is regained by considering the parasitic mass in the tuning strategy

    Molecular gas as the driver of fundamental galactic relations

    Get PDF
    There has been much recent work dedicated to exploring secondary correlations in the mass-metallicity relation, with significant dependence on both the SFR (SFR) and Hi content being demonstrated. Previously, a paucity of molecular gas data (combined with sample selection bias) hampered the investigation of any such relation with molecular gas content. In this work, we assemble a sample of 221 galaxies from a variety of surveys in the redshift range 0<z<2, to explore the connection between molecular gas content and metallicity. We explore the effect of gas mass on the mass-metallicity relation, finding that the offset from the relation is negatively correlated against both molecular and total gas mass. We then employ a principle component analysis technique to explore secondary dependences in the mass-metallicity relation, finding that the secondary dependence with gas mass is significantly stronger than with SFR, and as such the underlying ‘fundamental metallicity relation' is between stellar mass, metallicity, and gas mass. In particular, the metallicity dependence on SFR is simply a byproduct of the dependence on the molecular gas content, via the Schmidt-Kennicutt relation. Finally, we note that our principle component analysis finds essentially no connection between gas-phase metallicity and the efficiency of star formatio

    Imaging the molecular gas in a submm galaxy at z = 4.05: cold mode accretion or a major merger?

    Get PDF
    We present a high resolution (down to 0.18"), multi-transition imaging study of the molecular gas in the z = 4.05 submillimeter galaxy GN20. GN20 is one of the most luminous starburst galaxy known at z > 4, and is a member of a rich proto-cluster of galaxies at z = 4.05 in GOODS-North. We have observed the CO 1-0 and 2-1 emission with the VLA, the CO 6-5 emission with the PdBI Interferometer, and the 5-4 emission with CARMA. The H_2 mass derived from the CO 1-0 emission is 1.3 \times 10^{11} (\alpha/0.8) Mo. High resolution imaging of CO 2-1 shows emission distributed over a large area, appearing as partial ring, or disk, of ~ 10kpc diameter. The integrated CO excitation is higher than found in the inner disk of the Milky Way, but lower than that seen in high redshift quasar host galaxies and low redshift starburst nuclei. The VLA CO 2-1 image at 0.2" resolution shows resolved, clumpy structure, with a few brighter clumps with intrinsic sizes ~ 2 kpc. The velocity field determined from the CO 6-5 emission is consistent with a rotating disk with a rotation velocity of ~ 570 km s^{-1} (using an inclination angle of 45^o), from which we derive a dynamical mass of 3 \times 10^{11} \msun within about 4 kpc radius. The star formation distribution, as derived from imaging of the radio synchrotron and dust continuum, is on a similar scale as the molecular gas distribution. The molecular gas and star formation are offset by ~ 1" from the HST I-band emission, implying that the regions of most intense star formation are highly dust-obscured on a scale of ~ 10 kpc. The large spatial extent and ordered rotation of this object suggests that this is not a major merger, but rather a clumpy disk accreting gas rapidly in minor mergers or smoothly from the proto-intracluster medium. ABSTRACT TRUNCATEDComment: 33 pages, 8 figures, submitted to the ApJ, aas latex forma

    A broadband spectroscopic search for CO line emission in HDF850.1: the brightest submillimetre object in the Hubble Deep Field North

    Get PDF
    Using the 100-m Green Bank Telescope, we have conducted a cm-wavelength search for CO J=1-0 line emission towards the high-redshift, far-infrared luminous object, HDF850.1 over the redshift interval 3.3<z<5.4. Despite the wealth of existing multi-wavelength observations, and the recent identification of a galaxy counterpart in deep K' band (2.2 um) imaging, an unambiguous spectroscopic redshift has not yet been obtained for this object. A far-infrared-to-radio wavelength photometric redshift technique however, predicts a ~90% probability that the redshift is in the range, 3.3<z<5.4 (equivalent to an observed redshifted CO J=1-0 emission line frequency, 26.5>nu(obs)>18.0 GHz), making HDF850.1 a potential occupent of the `high-redshift tail' of submm selected galaxies. We have also conducted a search for CO J=2-1 line emission over the narrower redshift range, 3.9<z<4.3. although we do not detect any CO line emission in this object, our limits to the CO line luminosity are in broad agreement with the median value measured in the current sample of high-redshift, submm selected objects detected in high-J CO line emission, but not sufficient to fully test the validity of the photometric redshift technique.Comment: accepted for publication in MNRA
    • …
    corecore