143 research outputs found

    Surface modification of hydrophobic polymers for improvement of endothelial cell-surface interactions

    Get PDF
    The aim of this study is to improve the interaction of endothelial cells with polymers used in vascular prostheses. Polytetrafluoroethylene (PTFE; Teflon) films were treated by means of nitrogen and oxygen plasmas. Depending on the plasma exposure time, modified PTFE surfaces showed water-contact angles of 15¿58° versus 96° for unmodified PTFE. Electron spectroscopy in chemical analysis (ESCA) measurements revealed incorporation of both nitrogenand oxygen-containing groups into the PTFE surfaces, dependent on the plasma composition and exposure time. In-vitro biological evaluation of unmodified and modified PTFE surfaces showed that human endothelial cells, seeded from 20% human serum-containing culture medium, adhered well on to modified PTFE surfaces, but not on to unmodified films. Adhesion of endothelial cells on to expanded PTFE graft material (Gore-Tex) was also stimulated by plasma treatment of this substrate. On plasma-treated expanded PTFE, the adhering endothelial cells formed a monolayer, which covered the textured surface. The latter observation is important in view of the hemocompatibility of vascular grafts seeded with endothelial cells before implantation

    Long-Term Conditioning to Elevated pCO2 and Warming Influences the Fatty and Amino Acid Composition of the Diatom Cylindrotheca fusiformis

    Get PDF
    The unabated rise in anthropogenic CO2 emissions is predicted to strongly influence the ocean's environment, increasing the mean sea-surface temperature by 4°C and causing a pH decline of 0.3 units by the year 2100. These changes are likely to affect the nutritional value of marine food sources since temperature and CO2 can influence the fatty (FA) and amino acid (AA) composition of marine primary producers. Here, essential amino (EA) and polyunsaturated fatty (PUFA) acids are of particular importance due to their nutritional value to higher trophic levels. In order to determine the interactive effects of CO2 and temperature on the nutritional quality of a primary producer, we analyzed the relative PUFA and EA composition of the diatom Cylindrotheca fusiformis cultured under a factorial matrix of 2 temperatures (14 and 19°C) and 3 partial pressures of CO2 (180, 380, 750 μatm) for >250 generations. Our results show a decay of ∼3% and ∼6% in PUFA and EA content in algae kept at a pCO2 of 750 μatm (high) compared to the 380 μatm (intermediate) CO2 treatments at 14°C. Cultures kept at 19°C displayed a ∼3% lower PUFA content under high compared to intermediate pCO2, while EA did not show differences between treatments. Algae grown at a pCO2 of 180 μatm (low) had a lower PUFA and AA content in relation to those at intermediate and high CO2 levels at 14°C, but there were no differences in EA at 19°C for any CO2 treatment. This study is the first to report adverse effects of warming and acidification on the EA of a primary producer, and corroborates previous observations of negative effects of these stressors on PUFA. Considering that only ∼20% of essential biomolecules such as PUFA (and possibly EA) are incorporated into new biomass at the next trophic level, thepotential impacts of adverse effects of ocean warming and acidification at the base of the food web may be amplified towards higher trophic levels, which rely on them as source of essential biomolecules

    Hydrocephalus from Overproduction of Cerebrospinal Fluid

    No full text

    Unusual Case of Meningocele in an Adult

    No full text
    corecore