34 research outputs found

    Transcriptomic Evidence That Longevity of Acquired Plastids in the Photosynthetic Slugs Elysia timida and Plakobranchus ocellatus Does Not Entail Lateral Transfer of Algal Nuclear Genes

    Get PDF
    Sacoglossan sea slugs are unique in the animal kingdom in that they sequester and maintain active plastids that they acquire from the siphonaceous algae upon which they feed, making the animals photosynthetic. Although most sacoglossan species digest their freshly ingested plastids within hours, four species from the family Plakobranchidae retain their stolen plastids (kleptoplasts) in a photosynthetically active state on timescales of weeks to months. The molecular basis of plastid maintenance within the cytosol of digestive gland cells in these photosynthetic metazoans is yet unknown but is widely thought to involve gene transfer from the algal food source to the slugs based upon previous investigations of single genes. Indeed, normal plastid development requires hundreds of nuclear-encoded proteins, with protein turnover in photosystem II in particular known to be rapid under various conditions. Moreover, only algal plastids, not the algal nuclei, are sequestered by the animals during feeding. If algal nuclear genes are transferred to the animal either during feeding or in the germ line, and if they are expressed, then they should be readily detectable with deep-sequencing methods. We have sequenced expressed mRNAs from actively photosynthesizing, starved individuals of two photosynthetic sea slug species, Plakobranchus ocellatus Van Hasselt, 1824 and Elysia timida Risso, 1818. We find that nuclear-encoded, algal-derived genes specific to photosynthetic function are expressed neither in P. ocellatus nor in E. timida. Despite their dramatic plastid longevity, these photosynthetic sacoglossan slugs do not express genes acquired from algal nuclei in order to maintain plastid function

    The bubble snails (Gastropoda, Heterobranchia) of Mozambique: an overlooked biodiversity hotspot

    Get PDF
    This first account, dedicated to the shallow water marine heterobranch gastropods of Mozambique is presented with a focus on the clades Acteonoidea and Cephalaspidea. Specimens were obtained as a result of sporadic sampling and two dedicated field campaigns between the years of 2012 and 2015, conducted along the northern and southern coasts of Mozambique. Specimens were collected by hand in the intertidal and subtidal reefs by snorkelling or SCUBA diving down to a depth of 33 m. Thirty-two species were found, of which 22 are new records to Mozambique and five are new for the Western Indian Ocean. This account raises the total number of shallow water Acteonoidea and Cephalaspidea known in Mozambique to 39 species, which represents approximately 50 % of the Indian Ocean diversity and 83 % of the diversity of these molluscs found in the Red Sea. A gap in sampling was identified in the central swamp/mangrove bio-region of Mozambique, and therefore, we suggest that future research efforts concentrate on or at least consider this region.publishedVersio

    Solution Structure and Phylogenetics of Prod1, a Member of the Three-Finger Protein Superfamily Implicated in Salamander Limb Regeneration

    Get PDF
    Prod1 is a cell-surface molecule of the three-finger protein (TFP) superfamily involved in the specification of newt limb PD identity. The TFP superfamily is a highly diverse group of metazoan proteins that includes snake venom toxins, mammalian transmembrane receptors and miscellaneous signaling molecules..The available data suggest that Prod1, and thereby its role in encoding PD identity, is restricted to salamanders. The lack of comparable limb-regenerative capability in other adult vertebrates could be correlated with the absence of the Prod1 gene

    Redescription of Charcotia granulosa Vayssiere, 1906 (Nudibranchia: Arminoidea: Charcotiidae) from Signy Island, Antarctica

    No full text
    The nudibranch Charcotia granulosa, described originally by Vayssière (1906) from one specimen, was recollected for the first time at Signy Island, Antarctica. These three specimens allow a redescription of the morphology, anatomy and histology. The synapo-morphies of the Charcotiidae (narrow, glandular stripe on the rightside starting behind the female genital opening, and running posteriorly above the nephroproct and anal papilla, and flat, rudimentary lateral radular teeth), with the two genera, the monotypic Charcotia Vayssière, 1906 and Pseudo-tritonia Thiele, 1912 (with three species) are discussed

    Anatomy of Pseudotritonia Thiele, 1912 and Notaeolidia Eliot, 1905 (Gastropoda: Opisthobranchia: Nudibranchia) from Signy Island, Antarctica

    No full text
    Several species of nudibranch molluscs are abundant amongst the rich benthic hard substratum communities found close to the British Antarctic Survey base at Signy Island, in the Atlantic sector of the Antarctic. Over the austral summer 1992/1993, two of the authors (LWB and DKAB) were able to collect some of the lesser known species of Nudibranchia at depths between 3 and 40 metres, using SCUBA. New information on morphology and anatomy of two of these species, Pseudotritonia gracilidens Odhner, 1944 (Charcotiidae, Arminoidea) and Notaeolidia gigas Eliot, 1905(Notaeolidiidae, Aeolidoidea) are presented in this paper. The validity of the species Notaeolidia gigas is strengthene

    The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships

    No full text
    Remipedia are rare and ancient mandibulate arthropods inhabiting almost inaccessible submerged cave systems. Their phylogenetic position is still enigmatic and the subject of extremely controversial debates. To contribute arguments to this discussion, we analyzed the brain of Godzilliognomus frondosus Yager, 1989 (Remipedia, Godzilliidae) and provide a detailed 3D reconstruction of its anatomy. This reconstruction yielded the surprising finding that in comparison with the brain of other crustaceans such as representatives of the Branchiopoda and Maxillopoda the brain of G. frondosus is highly organized and well differentiated. It is matched in complexity only by the brain of “higher” crustaceans (Malacostraca) and Hexapoda. A phylogenetic analysis limited to brain anatomy across the Mandibulata strongly contradicts the prevailing hypothesis that the Remipedia are a basal, ancestral crustacean group but instead argues in favor of a remipede-malacostracan-hexapod clade and most likely a sister-group relationship of Remipedia and Malacostraca
    corecore