19 research outputs found

    Spectral performance of ECLAIRs flight detectors on SVOM mission

    No full text
    International audienceThe hard X-ray imager of the Sino-French SVOM mission, called ECLAIRs, is dedicated to the detection and near real time localization of cosmic transients in the 4−150  keV energy range. ECLAIRs is a wide-field camera using a detection plane consisting of 6400 Schottky CdTe detectors, which makes images of the hard X-ray sky thanks to a coded mask. The detection plane is highly modular, being made of 200 hybrid modules of 4 x 8 pixels (called “XRDPIX”). Based on both an extremely low noise design and the use of innovative technologies, the ECLAIRs instrument will achieve the unprecedented low-energy threshold of 4 keV over the entire detection plane.The CdTe semiconductor detectors of 4  ×  4 mm 2  size and 1 mm thickness are biased with a high voltage going to −450V, and regulated at −20∘ C to minimize the leakage current and maximize the polarization time due to Schottky barrier lowering. The low-energy threshold required for the space mission is achieved thanks to an extensive characterization of the elements constituting the XRDPIX modules.In this paper, we introduce the astrophysical context that led to the design of the mission, with an emphasis on the study of GRBs with ECLAIRs. We provide a detailed description of the XRDPIX hybrid modules, and we explain the experimental setup used for testing and qualifying 45 flight models. We present the results of the measurements performed to validate the module performance with a radioactive source of Americium 241. We study the spectral resolution, the low energy threshold, the gain of the detectors, and their counting performance. We also present two side studies concerning the impact of low temperatures and the stability of the performance over time. To conclude, we propose optimal settings for two key configuration parameters: the high voltage bias and the peaking time, that permit obtaining the challenging 4 keV energy threshold required for the SVOM mission

    Characterizing the dead time of the ECLAIRs camera on board the mission SVOM

    No full text
    International audienceFrench (CNES) and Chinese (CNSA) space agencies collaborate to build the SVOM (Space-based multi-band Variable Object Monitor) mission due to be launched in 2021 to study gamma-ray bursts and high-energy transients. The SVOM prime instrument, ECLAIRs, will detect and localize GRBs autonomously as well as provide a spectral and temporal characterization of the GRB prompt emission. ECLAIRs is expected to detect around 200 GRBs during the 3 year nominal lifetime of the mission. ECLAIRs is a wide-field (∌ 2 {sr}) coded mask camera with a detection plane made of 8 independent sectors of 800 Schottky CdTe detectors working in the 4-150 keV energy range. Each sector is connected to independent readout electronics. In this paper, we focus on the study of the temporal performance and we estimate how dead time will affect bright transient lightcurves. We discuss the analytical model based on simulations over a large range of source count rates on a dedicated test bench. We show that dead time will not significantly affect ECLAIRs data, even for the brightest GRBs (3.7% of lost counts for a count rate of 105 counts.s- 1 over the detection plane in the energy range 4-150 keV) and our model can nicely correct the parts of the lightcurves which are the most affected by dead time effects for very bright GRBs

    Prospects for a survey of the Galactic plane with the Cherenkov Telescope Array

    No full text
    International audienceApproximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the main classes of established Galactic VHE sources, as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy. We use the improved sky model and observation strategy to simulate GPS data that are analysed using the methods and software tools under development for real data. We show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, and to identify any bright PeVatrons. Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios. (Abridged

    Prospects for a survey of the Galactic plane with the Cherenkov Telescope Array

    No full text
    Approximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the main classes of established Galactic VHE sources, as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy. We use the improved sky model and observation strategy to simulate GPS data that are analysed using the methods and software tools under development for real data. We show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, and to identify any bright PeVatrons. Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios. (Abridged

    Prospects for a survey of the Galactic plane with the Cherenkov Telescope Array

    No full text
    International audienceApproximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the main classes of established Galactic VHE sources, as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy. We use the improved sky model and observation strategy to simulate GPS data that are analysed using the methods and software tools under development for real data. We show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, and to identify any bright PeVatrons. Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios. (Abridged

    Prospects for a survey of the Galactic plane with the Cherenkov Telescope Array

    No full text
    International audienceApproximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the main classes of established Galactic VHE sources, as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy. We use the improved sky model and observation strategy to simulate GPS data that are analysed using the methods and software tools under development for real data. We show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, and to identify any bright PeVatrons. Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios. (Abridged

    Prospects for a survey of the Galactic plane with the Cherenkov Telescope Array

    No full text
    International audienceApproximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the main classes of established Galactic VHE sources, as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy. We use the improved sky model and observation strategy to simulate GPS data that are analysed using the methods and software tools under development for real data. We show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, and to identify any bright PeVatrons. Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios. (Abridged

    Prospects for a survey of the Galactic plane with the Cherenkov Telescope Array

    No full text
    Approximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the main classes of established Galactic VHE sources, as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy. We use the improved sky model and observation strategy to simulate GPS data that are analysed using the methods and software tools under development for real data. We show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, and to identify any bright PeVatrons. Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios. (Abridged
    corecore