51 research outputs found

    Bars and spirals in tidal interactions with an ensemble of galaxy mass models

    Get PDF
    We present simulations of the gaseous and stellar material in several different galaxy mass models under the influence of different tidal fly-bys to assess the changes in their bar and spiral morphology. Five different mass models are chosen to represent the variety of rotation curves seen in nature. We find a multitude of different spiral and bar structures can be created, with their properties dependent on the strength of the interaction. We calculate pattern speeds, spiral wind-up rates, bar lengths, and angular momentum exchange to quantify the changes in disc morphology in each scenario. The wind-up rates of the tidal spirals follow the 2:1 resonance very closely for the flat and dark matter dominated rotation curves, whereas the more baryon dominated curves tend to wind-up faster, influenced by their inner bars. Clear spurs are seen in most of the tidal spirals, most noticeable in the flat rotation curve models. Bars formed both in isolation and interactions agree well with those seen in real galaxies, with a mixture of "fast" and "slow" rotators. We find no strong correlation between bar length or pattern speed and the interaction strength. Bar formation is, however, accelerated/induced in four out of five of our models. We close by briefly comparing the morphology of our models to real galaxies, easily finding analogues for nearly all simulations presenter here, showing passages of small companions can easily reproduce an ensemble of observed morphologies.Comment: 30 pages, 29 colour figures, accepted for publication in MNRAS. Videos of simulations can be found at http://www.youtube.com/playlist?list=PLQKy--XcWrIVBc1sS2RNc-ekyfeBsGtD

    Gas and stellar spiral structures in tidally perturbed disc galaxies

    Get PDF
    Tidal interactions between disc galaxies and low mass companions are an established method for generating galactic spiral features. In this work we present a study of the structure and dynamics of spiral arms driven in interactions between disc galaxies and perturbing companions in 3-D N-body/smoothed hydrodynamical numerical simulations. Our specific aims are to characterize any differences between structures formed in the gas and stars from a purely hydrodynamical and gravitational perspective, and to find a limiting case for spiral structure generation. Through analysis of a number of different interacting cases, we find that there is very little difference between arm morphology, pitch angles and pattern speeds between the two media. The main differences are a minor offset between gas and stellar arms, clear spurring features in gaseous arms, and different radial migration of material in the stronger interacting cases. We investigate the minimum mass of a companion required to drive spiral structure in a galactic disc, finding the limiting spiral generation cases with companion masses of the order 1×109M1\times10^9M_\odot, equivalent to only 4% of the stellar disc mass, or 0.5% of the total galactic mass of a Milky Way analogue.Comment: 20 pages, 23 figures, accepted for publication by MNRA

    The Full Re-Ionization of Helium

    Get PDF
    Observations of resolved HeII Lyman alpha absorption in spectra of two QSO's suggest that the epoch of helium ionization occurred at z~3. Proximity zones in the spectra of the quasars (z=3.18, 3.285) at 304 A resemble Stromgren spheres, suggesting that the intergalactic medium is only singly ionized in helium. We present models of the proximity effect which include the full physics of the ionization, heating and cooling and an accurately simulated inhomogeneous gas distribution. In these models the underdense intergalactic medium is heated to at least 10,000-20,000 K after cooling to as low as a few 1000 K due to cosmological expansion, with higher temperatures achieved farther away from the quasar due to absorption-hardened ionizing spectra. The quasars turn on for a few times 10^7 years with a fairly steady flux output at 228 A comparable to the 304 A flux output directly observed with HST. The recoveries in the spectra occur naturally due to voids in the IGM and may provide a fairly model-independent probe of the baryon density.Comment: 5 pages, 3 figures, to appear in the proceedings of "After the Dark Ages: When Galaxies were Young (the Universe at 2<z<5)", 9th Annual October Astrophysics Conference in Marylan

    Spectral reconstruction for radiation hydrodynamic simulations of galaxy evolution

    Full text link
    Radiation from stars and AGN plays an important role in galaxy formation and evolution, and profoundly transforms the IGM, CGM & ISM. On-the-fly RT has started being incorporated in cosmological simulations, but the complex, evolving radiation spectra are often crudely approximated with a small number of broad bands with piece-wise constant intensity and a fixed photo-ionisation cross-section. Such a treatment is unable to capture the changes to the spectrum as light is absorbed while it propagates through a medium with non-zero opacity. This can lead to large errors in photo-ionisation and heating rates. We present a novel approach of discretising the radiation field in narrow bands, located at the edges of the typically used bands, in order to capture the power-law slope of the radiation field. In combination with power-law approximations for the photo-ionisation cross-sections, this model allows us to self-consistently combine radiation from sources with different spectra and accurately follow the ionisation states of primordial and metal species through time. The method is implemented in Gasoline2 in connection with Trevr2. We compare our new piece-wise power-law reconstruction to the piece-wise constant method in calculating the primordial chemistry photo-ionisation and heating rates under an evolving UVB and stellar spectrum, and find that our method reduces errors significantly, up to two orders of magnitude in the case of HeII ionisation. We apply our new spectral reconstruction method in RT post-processing of a cosmological zoom-in simulation, including radiation from stars and a live UVB, and find a significant increase in total neutral hydrogen mass in the ISM and the CGM due to shielding of the UVB and a low escape fraction of the stellar radiation. This demonstrates the importance of RT and an accurate spectral approximation in simulating the CGM-galaxy ecosystem.Comment: Submitted for publication to A&A, 17 pages, 15 figure

    TREVR2: Illuminating fast Nlog2NN\log_2\,N radiative transfer

    Full text link
    We present TREVR2 (Tree-based REVerse Ray Tracing 2), a fast, general algorithm for computing the radiation field, suitable for both particle and mesh codes. It is designed to self-consistently evolve chemistry for zoomed-in astrophysical simulations, such as cosmological galaxies with both internal sources and prescribed background radiation, rather than large periodic volumes. Light is propagated until absorbed, with no imposed speed limit other than those due to opacity changes (e.g. ionization fronts). TREVR2 searches outward from receiving gas in discrete directions set by the HEALPIX algorithm (unlike its slower predecessor TREVR), accumulating optical depth and adding the flux due to sources combined into progressively larger tree cells with distance. We demonstrate Nactivelog2NN_\textrm{active}\log_2 N execution time with absorption and many sources. This allows multi-band RT costs comparable to tree-based gravity and hydrodynamics, and the usual speed-up when active particles evolve on individual timesteps. Sources embedded in non-homogeneous absorbing material introduce systematic errors. We introduce transmission averaging instead of absorption averaging which dramatically reduces these systematic effects. We outline other ways to address systematics including an explicit complex source model. We demonstrate the overall performance of the method via a set of astrophysical test problems.Comment: Submitted to MNRA

    Star formation and ISM morphology in tidally induced spiral structures

    Get PDF
    Tidal encounters are believed to be one of the key drivers of galactic spiral structure in the Universe. Such spirals are expected to produce different morphological and kinematic features compared to density wave and dynamic spiral arms. In this work we present high resolution simulations of a tidal encounter of a small mass companion with a disc galaxy. Included are the effects of gas cooling and heating, star formation and stellar feedback. The structure of the perturbed disc differs greatly from the isolated galaxy, showing clear spiral features that act as sites of new star formation, and displaying interarm spurs. The two arms of the galaxy, the bridge and tail, appear to behave differently; with different star formation histories and structure. Specific attention is focused on offsets between gas and stellar spiral features which can be directly compared to observations. We find some offsets do exist between different media, with gaseous arms appearing mostly on the convex side of the stellar arms, though the exact locations appear highly time dependent. These results further highlight the differences between tidal spirals and other theories of arm structure.Comment: 17 pages, 19 colour figures, accepted for publication in MNRA
    corecore