630 research outputs found

    A Note on Gauge Invariant Operators in Noncommutative Gauge Theories and the Matrix Model

    Get PDF
    In this note we discuss local gauge-invariant operators in noncommutative gauge theories. Inspired by the connection of these theories with the Matrix model, we give a simple construction of a complete set of gauge-invariant operators. We make connection with the recent discussions of candidate operators which are dual to closed strings modes. We also discuss large Wilson loops which in the limit of vanishing noncommutativity, reduce to the closed Wilson loops of the ordinary gauge theory

    Noncritical Strings, RG Flows and Holography

    Get PDF
    We derive an RG flow equation that is satisfied by the regularized partition function for noncritical strings in background fields. The flow refers to change in the position of a ``boundary'' in the liouville direction. The boundary is required to regularize the ultraviolet divergences in the partition function coming from integration over world-sheets of arbitrarily small area. From the point of view of the target space effective gravitational action that the partition function evaluates on-shell, the boundary regularizes {\it infrared} divergences coming from the infinite volume of the liouville direction. The RG flow equation that we obtain looks very much like the Hamilton-Jacobi constraint equation that an on-shell gauge-fixed gravitational action must satisfy

    Gauge/Gravity Duality and Some Applications

    Full text link
    We discuss the AdS/CFT correspondence in which space-time emerges from an interacting theory of D-branes and open strings. These ideas have a historical continuity with QCD which is an interacting theory of quarks and gluons. In particular we review the classic case of D3 branes and the non-conformal D1 brane system. We outline by some illustrative examples the calculations that are enabled in a strongly coupled gauge theory by correspondence with dynamical horizons in semi-classical gravity in one higher dimension. We also discuss implications of the gauge-fluid/gravity correspondence for the information paradox of black hole physics.Comment: 19 pages, 2 figures, Contribution to "Conference in Honor of Murray Gell-Mann's 80th Birthday

    Acute effects of sex steroids on visual processing in male goldfish

    Get PDF
    Elevations of sex steroids induced by social cues can rapidly modulate social behavior, but we know little about where they act within the nervous system to produce such effects. In male goldfish, testosterone (T) rapidly increases approach responses to the visual cues of females through its conversion to estradiol. Because aromatase is expressed in the retina, we tested if T can acutely influence retina responses to visual stimuli, and investigated the receptor mechanisms that may mediate such effects. Specifically, we measured FOS protein immunoreactivity to determine if T affects cellular responses to visual stimuli that include females, and used electrophysiology to investigate whether T can generally affect light sensitivity. We found that T acutely increased FOS responses to the simultaneous onset of light and the presence of female visual stimuli, both of which would normally be associated with early morning spawning, and increased electrophysiological responses to low intensity light pulses. Both effects were blocked by an estrogen receptor beta (ERβ) antagonist, indicating that T is likely being converted to estradiol (E2) and acting through an ERβ mediated mechanism to acutely modulate visual processing. Changes in sensory processing could subsequently influence approach behavior to increase reproductive success in competitive mating environments

    Supersymmetric Chern-Simons Theories with Vector Matter

    Full text link
    In this paper we discuss SU(N) Chern-Simons theories at level k with both fermionic and bosonic vector matter. In particular we present an exact calculation of the free energy of the N=2 supersymmetric model (with one chiral field) for all values of the 't Hooft coupling in the large N limit. This is done by using a generalization of the standard Hubbard-Stratanovich method because the SUSY model contains higher order polynomial interactions.Comment: 46 pages, 24 figures, v2: comments and references added, v3: a footnote in Section 3.5 adde

    Pathologic Prion Protein Infects Cells by Lipid-Raft Dependent Macropinocytosis

    Get PDF
    Transmissible spongiform encephalopathies, including variant-Creutzfeldt-Jakob disease (vCJD) in humans and bovine spongiform encephalopathies in cattle, are fatal neurodegenerative disorders characterized by protein misfolding of the host cellular prion protein (PrPC) to the infectious scrapie form (PrPSc). However, the mechanism that exogenous PrPSc infects cells and where pathologic conversion of PrPC to the PrPSc form occurs remains uncertain. Here we report that similar to the mechanism of HIV-1 TAT-mediated peptide transduction, processed mature, full length PrP contains a conserved N-terminal cationic domain that stimulates cellular uptake by lipid raft-dependent, macropinocytosis. Inhibition of macropinocytosis by three independent means prevented cellular uptake of recombinant PrP; however, it did not affect recombinant PrP cell surface association. In addition, fusion of the cationic N-terminal PrP domain to a Cre recombinase reporter protein was sufficient to promote both cellular uptake and escape from the macropinosomes into the cytoplasm. Inhibition of macropinocytosis was sufficient to prevent conversion of PrPC to the pathologic PrPSc form in N2a cells exposed to strain RML PrPSc infected brain homogenates, suggesting that a critical determinant of PrPC conversion occurs following macropinocytotic internalization and not through mere membrane association. Taken together, these observations provide a cellular mechanism that exogenous pathological PrPSc infects cells by lipid raft dependent, macropinocytosis

    Quark Confinement and Dual Representation in 2+1 Dimensional Pure Yang-Mills Theory

    Get PDF
    We study the quark confinement problem in 2+1 dimensional pure Yang-Mills theory using euclidean instanton methods. The instantons are regularized and dressed Wu-Yang monopoles. The dressing of a monopole is due to the mean field of the rest of the monopoles. We argue that such configurations are stable to small perturbations unlike the case of singular, undressed monopoles. Using exact non-perturbative results for the 3-dim. Coulomb gas, where Debye screening holds for arbitrarily low temperatures, we show in a self-consistent way that a mass gap is dynamically generated in the gauge theory. The mass gap also determines the size of the monopoles. In a sense the pure Yang-Mills theory generates a dynamical Higgs effect. We also identify the disorder operator of the model in terms of the Sine-Gordon field of the Coulomb gas.Comment: 26 pages, RevTex, Title changed, a new section added, the discussion on stability of dressed monopole expanded. Version to appear in Physical Review

    Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses

    Full text link
    Despite the fact that the loss functions of deep neural networks are highly non-convex, gradient-based optimization algorithms converge to approximately the same performance from many random initial points. One thread of work has focused on explaining this phenomenon by characterizing the local curvature near critical points of the loss function, where the gradients are near zero, and demonstrating that neural network losses enjoy a no-bad-local-minima property and an abundance of saddle points. We report here that the methods used to find these putative critical points suffer from a bad local minima problem of their own: they often converge to or pass through regions where the gradient norm has a stationary point. We call these gradient-flat regions, since they arise when the gradient is approximately in the kernel of the Hessian, such that the loss is locally approximately linear, or flat, in the direction of the gradient. We describe how the presence of these regions necessitates care in both interpreting past results that claimed to find critical points of neural network losses and in designing second-order methods for optimizing neural networks.Comment: 18 pages, 5 figure
    corecore