27 research outputs found

    Simple 1-mm receivers with fixed tuned double sideband SIS mixer and wideband InP MMIC amplifier

    Get PDF
    We report on attempts to broaden the IF bandwidth of the BIMA 1mm SIS receivers by cascading fixed tuned double-sideband (DSB) SIS mixers and wideband MMIC IF amplifiers. To obtain the flattest receiver gain across the IF band we tested three schemes for keeping the mixer and amplifier as electrically close as possible. In Receiver I, we connected separate mixer and MMIC modules by a 1" stainless steel SMA elbow. In Receiver II, we integrated mixer and MMIC into a modified BIMA mixer module. In Receiver III, we devised a thermally split block where mixer and MMIC can be maintained at different temperatures in the same module. The best average receiver noise we achieved by combining SIS mixer and MMIC amplifier is 45 -50 K DSB for ν_(LO) = 215 - 240 GHz and below 80 K DSB for ν_(LO) = 205 - 270 GHz. The receiver noise can be made reasonably flat over the CARMA IF band (ν_(IF) = 1 - 5 GHz). Noise temperatures for all three receivers are comparable to or better than those obtained with the BIMA receiver

    A 490 GHz planar circuit balanced Nb-Al2_\mathbf{2}O3_{\mathbf{3}}-Nb quasiparticle mixer for radio astronomy: Application to quantitative local oscillator noise determination

    Full text link
    This article presents a heterodyne experiment which uses a 380-520 GHz planar circuit balanced Nb-Al2O3\mathrm{Al_2O_3}-Nb superconductor-insulator-superconductor (SIS) quasiparticle mixer with 4-8 GHz instantaneous intermediate frequency (IF) bandwidth to quantitatively determine local oscillator (LO) noise. A balanced mixer is a unique tool to separate noise at the mixer's LO port from other noise sources. This is not possible in single-ended mixers. The antisymmetric IV characteristic of a SIS mixer further helps to simplify the measurements. The double-sideband receiver sensitivity of the balanced mixer is 2-4 times the quantum noise limit hν/kBh\nu/k_B over the measured frequencies with a maximum LO noise rejection of 15 dB. This work presents independent measurements with three different LO sources that produce the reference frequency but also an amount of near-carrier noise power which is quantified in the experiment as a function of the LO and IF frequency in terms of an equivalent noise temperature TLOT_{LO}. In a second experiment we use only one of two SIS mixers of the balanced mixer chip, in order to verify the influence of near-carrier LO noise power on a single-ended heterodyne mixer measurement. We find an IF frequency dependence of near-carrier LO noise power. The frequency-resolved IF noise temperature slope is flat or slightly negative for the single-ended mixer. This is in contrast to the IF slope of the balanced mixer itself which is positive due to the expected IF roll-off of the mixer. This indicates a higher noise level closer to the LO's carrier frequency. Our findings imply that near-carrier LO noise has the largest impact on the sensitivity of a receiver system which uses mixers with a low IF band, for example superconducting hot-electron bolometer (HEB) mixers.Comment: 13 pages, 8 figures, 2 tables, see manuscript for complete abstrac

    Simple 1-mm receivers with fixed tuned double sideband SIS mixer and wideband InP MMIC amplifier

    Get PDF
    We report on attempts to broaden the IF bandwidth of the BIMA 1mm SIS receivers by cascading fixed tuned double-sideband (DSB) SIS mixers and wideband MMIC IF amplifiers. To obtain the flattest receiver gain across the IF band we tested three schemes for keeping the mixer and amplifier as electrically close as possible. In Receiver I, we connected separate mixer and MMIC modules by a 1" stainless steel SMA elbow. In Receiver II, we integrated mixer and MMIC into a modified BIMA mixer module. In Receiver III, we devised a thermally split block where mixer and MMIC can be maintained at different temperatures in the same module. The best average receiver noise we achieved by combining SIS mixer and MMIC amplifier is 45 -50 K DSB for ν_(LO) = 215 - 240 GHz and below 80 K DSB for ν_(LO) = 205 - 270 GHz. The receiver noise can be made reasonably flat over the CARMA IF band (ν_(IF) = 1 - 5 GHz). Noise temperatures for all three receivers are comparable to or better than those obtained with the BIMA receiver

    Phonon black-body radiation limit for heat dissipation in electronics

    Get PDF
    Thermal dissipation at the active region of electronic devices is a fundamental process of considerable importance. Inadequate heat dissipation can lead to prohibitively large temperature rises that degrade performance and intensive efforts are under way to mitigate this self-heating. At room temperature, thermal resistance is due to scattering, often by defects and interfaces in the active region, that impedes the transport of phonons. Here, we demonstrate that heat dissipation in widely used cryogenic electronic devices instead occurs by phonon black-body radiation with the complete absence of scattering, leading to large self-heating at cryogenic temperatures and setting a key limit on the noise floor. Our result has important implications for the many fields that require ultralow-noise electronic devices

    Simple 1 MM Receivers with a Fixed Tuned Double Sideband SIS Mixer and a Wideband INP MMIC Amplifier

    No full text
    We report on techniques to broaden the intermediate frequency (IF) bandwidth of the Berkeley‐Illinois‐Maryland Array (BIMA) 1mm Superconductor‐Insulator‐Superconductor (SIS) heterodyne receivers by combining fixed tuned Double Side Band (DSB) SIS mixers and wideband Monolithic Microwave Integrated Circuit (MMIC) IF amplifiers. To obtain the flattest receiver gain across the IF band we tested three schemes for keeping the mixer and amplifier as electrically close as possible. In Receiver I, we connected separate mixer and MMIC modules by a 1″ stainless steel SMA elbow. In Receiver II, we integrated mixer and MMIC into a modified BIMA mixer module. In Receiver III, we devised a thermally split block in which mixer and MMIC can be maintained at different temperatures–in this receiver module the mixer at 4 K sees very little of the 10–20 mW heat load of the biased MMIC at 10 K. The best average receiver noise we achieved by combining SIS mixer and MMIC amplifier is 45 ‐50 K DSB for ν_(LO) = 215–240 GHz and below 80 K DSB for ν_(LO) = 205 ‐ 270 GHz. Over an IF frequency band of 1 – 4 GHz we have demonstrated receiver DSB noise temperatures of 40 – 60 K. Of the three receiver schemes, we feel Receiver III shows the most promise for continued development

    A 220 GHz (G-band) microstrip MMIC single-ended resistive mixer

    No full text
    This letter presents the design and characterization of a 220 GHz microstrip monolithic microwave integrated circuit single-ended resistive mixer in a 0.1 µm GaAs mHEMT technology. A conversion loss as low as 8.7 dB is obtained, limited by the available local oscillator (LO) power (1.5 dBm) in the measurement setup. The radio frequency (RF) bandwidth is also limited by the measurement setup, but the mixer demonstrates a flat response over the measured 200 to 220 GHz frequency range. Furthermore, measured intermediate frequency bandwidth, 1-dB input compression point, LO-to-RF isolation, and reflection coefficients are presented and discussed

    Integrated front-ends up to 200 GHz

    No full text
    In this paper, we present results of work done in packaging highly integrated circuits based on 100nm mHEMT technology. We present several examples of fully integrated receivers and sources for frequencies bands 90-130 GHz and 160-210 GHz. The circuits are packaged into waveguide blocks, characterized and compared to on-wafer measurements. Waveguide to microstrip transitions based on 50 um alumina substrate, and including via holes, are used to effectively interface the MMICs to a rectangular waveguide at RF without using tuning structures to resonate wire-inductance. Noise and return loss are characterized on wafer and after packaging. Typical increase of 0.7 dB in the NF is observed at 90-130 GHz after the packaging and 1 dB at 160-210 GHz. We address the issue of MMICs with high level of integration resulting in large cavities in the package causing instabilities for certain biasing conditions. Some of the packaged modules are characterized at both room and cryogenic temperatures
    corecore