14 research outputs found

    The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth

    Get PDF
    Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeleto ns. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology

    The influence of fluoride exposure on dentin mineralisation using an in vitro organ culture model

    No full text
    This study aimed to characterize fluoride-induced alterations in dentin mineralization within a dentin-pulp organ culture system. Tooth sections derived from male Wistar rat incisors were cultured in Trowel-type culture for 14 days, in the presence of 0 mM, 1 mM, 3 mM and 6 mM sodium fluoride. Tooth sections were processed and analyzed for uptake of fluoride, its subsequent effect on dentin mineralization by tetracycline hydrochloride incorporation and mineral composition, expressed as calcium/phosphorous (Ca/P) ratios. Tetracycline hydrochloride incorporation was demonstrated to decrease with increased fluoride exposure, accompanied by significant increases in both Ca/P ratios and fluoride incorporation. These findings provide further evidence that the established alterations in dentin formation during fluorosis are a consequence of disruption to the mineralization process, and provide a model system with which to investigate further the potential role the extracellular matrix plays in inducing the apparent changes in mineral composition

    The influence of fluoride on the cellular morphology and synthetic activity of the rat dentine-pulp complex in vitro

    No full text
    Exposure to high fluoride concentrations in the immediate environment of the tissue is recognized to result in the post-translational modification of non-collagenous dentine extracellular matrix (ECM) components, potentially altering dentine mineralization. However, less is known about the effects of fluoride exposure on the morphology or metabolism of the cells associated with the dentine–pulp complex. This study examined the effects of fluoride exposure at defined concentrations on the cellular morphology and ECM synthetic activities of odontoblasts and pulpal fibroblasts by the culture of tooth sections from male Wistar rat incisors in Trowel-type cultures for up to 14 days, in the presence and absence of 6 mM sodium fluoride. Histomorphometric analysis of the dentine–pulp complex of sodium fluoride-exposed tooth sections demonstrated no obvious gross morphological differences with respect to the odontoblasts and pulpal fibroblasts throughout the 14-day culture period, in comparison with unexposed tooth sections. No significant differences in odontoblast and pulpal fibroblast cell numbers were determined in the absence and presence of fluoride. Image analysis examination of odontoblast cytoplasmic:nuclear (C/N) ratios also showed no significant differences in fluoride-exposed and unexposed tooth sections, although reductions in the C/N ratios of pulpal fibroblasts were evident in fluoride-exposed sections at days 10 and 14. No significant differences in predentine width were observed in fluoride-exposed and unexposed tooth sections over the 14-day culture period. Autoradiography following [3H]proline incorporation into the dentine–pulp complex demonstrated inhibition of collagen synthesis, particularly by the odontoblasts in tooth sections exposed to 6 mM sodium fluoride. These findings, in association with those from previous studies, imply that dentine ECM alterations may contribute to the altered mineralization of dentine during fluorosis, rather than secretory-related changes in odontoblast morphology
    corecore