48 research outputs found
Near-infrared Single-photon-counting Detectors for Free-space Laser Receivers
We compare several photon-counting detector technologies for use as near-infrared timeresolved laser receivers in science instrument, communication and navigation systems. The key technologies are InGaAs(P) photocathode hybrid photomultiplier tubes and InGaAs(P) and HgCdTe avalanche photodiodes. We discuss recent experimental results and application
Detectors for the James Webb Space Telescope Near-Infrared Spectrograph I: Readout Mode, Noise Model, and Calibration Considerations
We describe how the James Webb Space Telescope (JWST) Near-Infrared
Spectrograph's (NIRSpec's) detectors will be read out, and present a model of
how noise scales with the number of multiple non-destructive reads
sampling-up-the-ramp. We believe that this noise model, which is validated
using real and simulated test data, is applicable to most astronomical
near-infrared instruments. We describe some non-ideal behaviors that have been
observed in engineering grade NIRSpec detectors, and demonstrate that they are
unlikely to affect NIRSpec sensitivity, operations, or calibration. These
include a HAWAII-2RG reset anomaly and random telegraph noise (RTN). Using real
test data, we show that the reset anomaly is: (1) very nearly noiseless and (2)
can be easily calibrated out. Likewise, we show that large-amplitude RTN
affects only a small and fixed population of pixels. It can therefore be
tracked using standard pixel operability maps.Comment: 55 pages, 10 figure
JWST Near-Infrared Detectors: Latest Test Results
The James Webb Space Telescope, an infrared-optimized space telescope being developed by NASA for launch in 2013, will utilize cutting-edge detector technology in its investigation of fundamental questions in astrophysics. JWST's near infrared spectrograph, NIRSpec utilizes two 2048 x 2048 HdCdTe arrays with Sidecar ASIC readout electronics developed by Teledyne to provide spectral coverage from 0.6 microns to 5 microns. We present recent test and calibration results for the NIRSpec flight arrays as well as data processing routines for noise reduction and cosmic ray rejection
Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph
The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins
New Particle-Induced Single Event Latchup Mechanism Observed in a Cryogenic CMOS Readout Integrated Circuit
No abstract availabl
James Webb Space Telescope Near-Infrared Spectrograph: Dark Performance of the First Flight Candidate Detector Arrays
The James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 micron) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. This article focuses on the measured performance of the first flight-candidate, and near-flight candidate, detector arrays. These are the first flight-packaged detector arrays that meet NIRSpec's challenging 6 e(-) rms total noise requirement
The ^{55}Fe X-ray Energy Response of Mercury Cadmium Telluride Near-Infrared Detector Arrays
A technique involving ^{55}Fe X-rays provides a straightforward method to
measure the response of a detector. The detector's response can lead directly
to a calculation of the conversion gain (e^- ADU^{-1}), as well as aid detector
design and performance studies. We calibrate the ^{55}Fe X-ray energy response
and pair production energy of HgCdTe using 8 HST WFC3 1.7 \micron flight grade
detectors. The results show that each K X-ray generates 2273 \pm 137
electrons, which corresponds to a pair-production energy of 2.61 \pm 0.16 eV.
The uncertainties are dominated by our knowledge of the conversion gain. In
future studies, we plan to eliminate this uncertainty by directly measuring
conversion gain at very low light levels.Comment: 17 pages, 7 Figures, 2 Table. Accepted for publication on PAS
Snowballs in Euclid and WFIRST Detectors
Snowballs are transient events observed in HgCdTe detectors with a sudden increase of charge in a few pixels. They appear between consecutive reads of the detector, after which the affected pixels return to their normal behavior. The origin of the snowballs is unknown, but it was speculated that they could be the result of alpha decay of naturally radioactive contaminants in the detectors, but a cosmic ray origin cannot be ruled out. Even though previous studies predicted a low rate of occurrence of these events, and consequently, a minimal impact on science, it is interesting to investigate the cause or causes that may generate snowballs and their impact in detectors designed for future missions. We searched for the presence of snowballs in the dark current data in Euclid and Wide Field Infrared Survey Telescope (WFIRST) detectors tested in the Detector Characterization Laboratory at Goddard Space Flight Center. Our investigation shows that for Euclid and WFIRST detectors, there are snowballs that appear only one time, and others that repeat in the same spatial localization. For Euclid detectors, there is a correlation between the snowballs that repeat and bad pixels in the operational masks (pixels that do not fulfill the requirements to pass spectroscopy noise, photometry noise, quantum efficiency, and/or linearity). The rate of occurrence for a snowball event is about 0.9 snowballs/hr. in Euclid detectors (for the ones that do not have associated bad pixels in the mask), and about 0.7 snowballs/hr. in PV3 Full Array Lot WFIRST detectors
Detectors for the James Webb Space Telescope Near-Infrared Spectrograph I: Readout Mode, Noise Model, and Calibration Considerations
We describe how the James Webb Space Telescope (JWST) Near-Infrared Spectrograph's (NIRSpec's) detectors will be read out, and present a model of how noise scales with the number of multiple non-destructive reads sampling-up-the-ramp. We believe that this noise model, which is validated using real and simulated test data, is applicable to most astronomical near-infrared instruments. We describe some non-ideal behaviors that have been observed in engineering grade NIRSpec detectors, and demonstrate that they are unlikely to affect NIRSpec sensitivity, operations, or calibration. These include a HAWAII-2RG reset anomaly and random telegraph noise (RTN). Using real test data, we show that the reset anomaly is: (1) very nearly noiseless and (2) can be easily calibrated out. Likewise, we show that RTN affects only a small and fixed population of pixels. It can therefore be tracked using standard pixel operability maps
The QWIP Focal Plane Assembly for NASA's Landsat Data Continuity Mission
The Thermal Infrared Sensor (TIRS) is a QWIP based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a dual channel far infrared imager with the two bands centered at 10.8[mu]m and 12.0[mu]m. The focal plane assembly (FPA) consists of three 640x512 GaAs Quantum Well Infrared Photodetector (QWIP) arrays precisely mounted to a silicon carrier substrate that is mounted on an invar baseplate. The two spectral bands are defined by bandpass filters mounted in close proximity to the detector surfaces. The focal plane operating temperature is 43K. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). Two varieties of QWIP detector arrays are being developed for this project, a corrugated surface structure QWIP and a grating surface structure QWIP. This paper will describe the TIRS system noise equivalent temperature difference sensitivity as it affects the QWIP focal plane performance requirements: spectral response, dark current, conversion efficiency, read noise, temperature stability, pixel uniformity, optical crosstalk and pixel yield. Additional mechanical constraints as well as qualification through Technology Readiness Level 6 (TRL 6) will also be discussed
