68 research outputs found

    Coherent Transport through an interacting double quantum dot: Beyond sequential tunneling

    Full text link
    Various causes for negative differential conductance in transport through an interacting double quantum dot are investigated. Particular focus is given to the interplay between the renormalization of the energy levels due to the coupling to the leads and the decoherence of the states. The calculations are performed within a basis of many-particle eigenstates and we consider the dynamics given by the von Neumann-equation taking into account also processes beyond sequential tunneling. A systematic comparison between the levels of approximation and also with different formalisms is performed. It is found that the current is qualitatively well described by sequential processes as long as the temperature is larger than the level broadening induced by the contacts.Comment: 11 pages, 5 figures included in tex

    The Potential Use of Antibiotics Against Helicobacter pylori Infection: Biopharmaceutical Implications

    Get PDF
    [EN] Helicobacter pylori (H. pylori) is a notorious, recalcitrant and silent germ, which can cause a variety of debilitating stomach diseases, including gastric and duodenal ulcers and gastric cancer. This microbe predominantly colonizes the mucosal layer of the human stomach and survives in the inhospitable gastric microenvironment, by adapting to this hostile milieu. In this review, we first discuss H. pylori colonization and invasion. Thereafter, we provide a survey of current curative options based on polypharmacy, looking at pharmacokinetics, pharmacodynamics and pharmaceutical microbiology concepts, in the battle against H. pylori infection.Miri, AH.; Kamankesh, M.; Llopis-Lorente, A.; Liu, C.; Wacker, MG.; Haririan, I.; Asadzadeh Aghdaei, H.... (2022). The Potential Use of Antibiotics Against Helicobacter pylori Infection: Biopharmaceutical Implications. Frontiers in Pharmacology. 13:1-16. https://doi.org/10.3389/fphar.2022.9171841161

    Oxygenation-sensitive CMR for assessing vasodilator-induced changes of myocardial oxygenation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As myocardial oxygenation may serve as a marker for ischemia and microvascular dysfunction, it could be clinically useful to have a non-invasive measure of changes in myocardial oxygenation. However, the impact of induced blood flow changes on oxygenation is not well understood. We used oxygenation-sensitive CMR to assess the relations between myocardial oxygenation and coronary sinus blood oxygen saturation (SvO<sub>2</sub>) and coronary blood flow in a dog model in which hyperemia was induced by intracoronary administration of vasodilators.</p> <p>Results</p> <p>During administration of acetylcholine and adenosine, CMR signal intensity correlated linearly with simultaneously measured SvO<sub>2 </sub>(<it>r</it><sup>2 </sup>= 0.74, <it>P </it>< 0.001). Both SvO<sub>2 </sub>and CMR signal intensity were exponentially related to coronary blood flow, with SvO2 approaching 87%.</p> <p>Conclusions</p> <p>Myocardial oxygenation as assessed with oxygenation-sensitive CMR imaging is linearly related to SvO<sub>2 </sub>and is exponentially related to vasodilator-induced increases of blood flow. Oxygenation-sensitive CMR may be useful to assess ischemia and microvascular function in patients. Its clinical utility should be evaluated.</p

    Temporal Changes in Extracellular Vesicle Hemostatic Protein Composition Predict Favourable Left Ventricular Remodeling after Acute Myocardial Infarction

    Get PDF
    The subset of plasma extracellular vesicles (EVs) that coprecipitate with low-density lipoprotein (LDL-EVs) carry coagulation and fibrinolysis pathway proteins as cargo. We investigated the association between LDL-EV hemostatic/fibrinolysis protein ratios and post-acute myocardial infarction (post-AMI) left ventricular (LV) remodeling which precedes heart failure. Protein concentrations of von Willebrand factor (VWF), SerpinC1 and plasminogen were determined in LDL-EVs extracted from plasma samples obtained at baseline (within 72 h post-AMI), 1 month and 6 months post-AMI from 198 patients. Patients were categorized as exhibiting adverse (n = 98) or reverse (n = 100) LV remodeling based on changes in LV end-systolic volume (increased or decreased ≥15) over a 6-month period. Multiple level longitudinal data analysis with structural equation (ML-SEM) model was used to assess predictive value for LV remodeling independent of baseline differences. At baseline, protein levels of VWF, SerpinC1 and plasminogen in LDL-EVs did not differ between patients with adverse versus reverse LV remodeling. At 1 month post-AMI, protein levels of VWF and SerpinC1 decreased whilst plasminogen increased in patients with adverse LV remodeling. In contrast, VWF and plasminogen decreased whilst SerpinC1 remained unchanged in patients with reverse LV remodeling. Overall, compared with patients with adverse LV remodeling, higher levels of SerpinC1 and VWF but lower levels of plasminogen resulted in higher ratios of VWF:Plasminogen and SerpinC1:Plasminogen at both 1 month and 6 months post-AMI in patients with reverse LV remodeling. More importantly, ratios VWF:Plasminogen (AUC = 0.674) and SerpinC1:Plasminogen (AUC = 0.712) displayed markedly better prognostic power than NT-proBNP (AUC = 0.384), troponin-I (AUC = 0.467) or troponin-T (AUC = 0.389) (p \u3c 0.001) to predict reverse LV remodeling post-AMI. Temporal changes in the ratios of coagulation to fibrinolysis pathway proteins in LDL-EVs outperform current standard plasma biomarkers in predicting post-AMI reverse LV remodeling. Our findings may provide clinical cues to uncover the cellular mechanisms underpinning post-AMI reverse LV remodeling

    NOD2-C2 - a novel NOD2 isoform activating NF-κB in a muramyl dipeptide-independent manner

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The innate immune system employs several receptor families that form the basis of sensing pathogen-associated molecular patterns. NOD (nucleotide-binding and oligomerization domain) like receptors (NLRs) comprise a group of cytosolic proteins that trigger protective responses upon recognition of intracellular danger signals. NOD2 displays a tandem caspase recruitment domain (CARD) architecture, which is unique within the NLR family.</p> <p>Findings</p> <p>Here, we report a novel alternative transcript of the <it>NOD2 </it>gene, which codes for a truncated tandem CARD only protein, called NOD2-C2. The transcript isoform is highest expressed in leucocytes, a natural barrier against pathogen invasion, and is strictly linked to promoter usage as well as predominantly to one allele of the single nucleotide polymorphism rs2067085. Contrary to a previously identified truncated single CARD NOD2 isoform, NOD2-S, NOD2-C2 is able to activate NF-κB in a dose dependent manner independently of muramyl dipeptide (MDP). On the other hand NOD2-C2 competes with MDPs ability to activate the NOD2-driven NF-κB signaling cascade.</p> <p>Conclusion</p> <p>NOD2 transcripts having included an alternative exon downstream of exon 3 (exon 3a) are the endogenous equivalents of a previously described <it>in vitro </it>construct with the putative protein composed of only the two N-terminal CARDs. This protein form (NOD2-C2) activates NF-κB independent of an MDP stimulus and is a potential regulator of NOD2 signaling.</p

    Correction to: Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI).

    Get PDF
    CORRECTION TO: J CARDIOVASC MAGN RESON (2017) 19: 75. DOI: 10.1186/S12968-017-0389-8: In the original publication of this article [1] the "Competing interests" section was incorrect. The original publication stated the following competing interests

    From in vitro to in vivo: A comprehensive guide to IVIVC development for long-acting therapeutics.

    No full text
    10.1016/j.addr.2023.114906Adv Drug Deliv Rev199114906

    Nanoencapsulation of ultra-small superparamagnetic particles of iron oxide into human serum albumin nanoparticles

    No full text
    Human serum albumin nanoparticles have been utilized as drug delivery systems for a variety of medical applications. Since ultra-small superparamagnetic particles of iron oxide (USPIO) are used as contrast agents in magnetic resonance imaging, their encapsulation into the protein matrix enables the synthesis of diagnostic and theranostic agents by surface modification and co-encapsulation of active pharmaceutical ingredients. The present investigation deals with the surface modification and nanoencapsulation of USPIO into an albumin matrix by using ethanolic desolvation. Particles of narrow size distribution and with a defined particle structure have been achieved

    Quo vadis Nano? Nanomaterialien in der pharmazeutischen Produktentwicklung

    No full text
    During the past decade nanotechnology has become an essential part of formulation development in the pharmaceutical industry. Liposomes, micelles and nanoparticles have all been utilized to increase the bioavailability of drugs, reduce acute toxicity, and to target compounds to the site of action. Furthermore, a variety of excipients used in cosmetics, food, medical devices, and medicinal products contain particles in the nanoscale. With the new definition from the European Commission from 2011 they have been classified as "nanomaterials". While the new legislation demands nanospecific risk assessment for these substances, a public controversy has been raised about the safety of nanotechnology in general. The question is how do these regulations affect product development in the pharmaceutical industry and what the future still holds
    corecore