99 research outputs found

    The core structure of presolar graphite onions

    Get PDF
    Of the ``presolar particles'' extracted from carbonaceous chondrite dissolution residues, i.e. of those particles which show isotopic evidence of solidification in the neighborhood of other stars prior to the origin of our solar system, one subset has an interesting concentric graphite-rim/graphene-core structure. We show here that single graphene sheet defects in the onion cores (e.g. cyclopentane loops) may be observable edge-on by HREM. This could allow a closer look at models for their formation, and in particular strengthen the possibility that growth of these assemblages proceeds atom-by-atom with the aid of such in-plane defects, under conditions of growth (e.g. radiation fluxes or grain temperature) which discourage the graphite layering that dominates subsequent formation of the rim.Comment: 4 pages, 7 figures, 11 refs, see also http://www.umsl.edu/~fraundor/isocore.htm

    Shearing behavior of polydisperse media

    Full text link
    We study the shearing of polydisperse and bidisperse media with a size ratio of 10. Simulations are performed with a the two dimensional shear cell using contact dynamics. With a truncated power law for the polydisperse media we find that they show a stronger dilatancy and greater resistance to shearing than bidisperse mixtures. Motivated by the practical problem of reducing the energy needed to shear granular media, we introduce "point-like particles" representing charged particles in the distribution. Even though changing the kinematic behavior very little, they reduce the force necessary to maintain a fixed shearing velocity.Comment: 17 pages, 15 figure

    The reversible polydisperse Parking Lot Model

    Full text link
    We use a new version of the reversible Parking Lot Model to study the compaction of vibrated polydisperse media. The particle sizes are distributed according to a truncated power law. We introduce a self-consistent desorption mechanism with a hierarchical initialization of the system. In this way, we approach densities close to unity. The final density depends on the polydispersity of the system as well as on the initialization and will reach a maximum value for a certain exponent in the power law.Comment: 7 pages, Latex, 12 figure

    An adaptive hierarchical domain decomposition method for parallel contact dynamics simulations of granular materials

    Full text link
    A fully parallel version of the contact dynamics (CD) method is presented in this paper. For large enough systems, 100% efficiency has been demonstrated for up to 256 processors using a hierarchical domain decomposition with dynamic load balancing. The iterative scheme to calculate the contact forces is left domain-wise sequential, with data exchange after each iteration step, which ensures its stability. The number of additional iterations required for convergence by the partially parallel updates at the domain boundaries becomes negligible with increasing number of particles, which allows for an effective parallelization. Compared to the sequential implementation, we found no influence of the parallelization on simulation results.Comment: 19 pages, 15 figures, published in Journal of Computational Physics (2011

    BVRI Light Curves for 29 Type Ia Supernovae

    Get PDF
    BVRI light curves are presented for 27 Type Ia supernovae discovered during the course of the Calan/Tololo Survey and for two other SNe Ia observed during the same period. Estimates of the maximum light magnitudes in the B, V, and I bands and the initial decline rate parameter m15(B) are also given.Comment: 17 pages, figures and tables are not included (contact first author if needed), to appear in the Astronomical Journa

    Supernova 2014J at M82 – II. Direct analysis of a middle-class Type Ia supernova

    Get PDF
    We analyze a time series of optical spectra of SN 2014J from almost two weeks prior to maximum to nearly four months after maximum. We perform our analysis using the SYNOW code, which is well suited to track the distribution of the ions with velocity in the ejecta. We show that almost all of the spectral features during the entire epoch can be identified with permitted transitions of the common ions found in normal SNe Ia in agreement with previous studies. We show that 2014J is a relatively normal SN Ia. At early times the spectral features are dominated by Si II, S II, Mg II, and Ca II. These ions persist to maximum light with the appearance of Na I and Mg I. At later times iron-group elements also appear, as expected in the stratified abundance model of the formation of normal type Ia SNe. We do not find significant spectroscopic evidence for oxygen, until 100 days after maximum light. The +100 day identification of oxygen is tentative, and would imply significant mixing of unburned or only slight processed elements down to a velocity of 6,000 km~s−1. Our results are in relatively good agreement with other analyses in the IR. We briefly compare SN 2011fe to SN 2014J and conclude that the differences could be due to different central densities at ignition or differences in the C/O ratio of the progenitors

    Schnelle Algorithmen zur Simulation extrem polydisperser Medien

    No full text
    In this work different algorithms to simulate extremely polydisperse media, which follow a truncated power law, were developed. The basic difficulty is the nonlinear dependence of the computing time on the polydispersity. It is possible to decouple the computing time from the polydispersity through a self-consistent and macroscopical discription of the so called local packings. These are the many small particles inbetween the large ones.In dieser Arbeit wurden verschiedene Algorithmen zur Simulation extrem polydisperser Medien, die einem abgeschnittenen Potenzgesetz folgen, entwickelt. Das grundlegende Problem besteht darin, dass der Rechenaufwand nichtlinear mit der Polydispersitaet zusammenhaengt. Eine Abkopplung des Rechenaufwandes gelingt durch die selbstkonsistente makroskopische Beschreibung der sogenannten lokalen Packungen. Dies sind die vielen kleinen Teilchen die zwischen den einzelnen grossen Teilchen zu liegen kommen
    corecore