172 research outputs found

    Perceptual spaces and their symmetries: The geometry of color space

    Get PDF
    Our sensory systems transform external signals into neural activity, thereby producing percepts. We are endowed with an intuitive notion of similarity between percepts, that need not reflect the proximity of the physical properties of the corresponding external stimuli. The quantitative characterization of the geometry of percepts is therefore an endeavour that must be accomplished behaviorally. Here we characterized the geometry of color space using discrimination and matching experiments. We proposed an individually tailored metric defined in terms of the minimal chromatic difference required for each observer to differentiate a stimulus from its surround. Next, we showed that this perceptual metric was particularly adequate to describe two additional experiments, since it revealed the natural symmetry of perceptual computations. In one of the experiments, observers were required to discriminate two stimuli surrounded by a chromaticity that differed from that of the tested stimuli. In the perceptual coordinates, the change in discrimination thresholds induced by the surround followed a simple law that only depended on the perceptual distance between the surround and each of the two compared stimuli. In the other experiment, subjects were asked to match the color of two stimuli surrounded by two different chromaticities. Again, in the perceptual coordinates the induction effect produced by surrounds followed a simple, symmetric law. We conclude that the individually-tailored notion of perceptual distance reveals the symmetry of the laws governing perceptual computations.Comment: 42 pages, 9 figures, 1 appendix. (v2) 47 pages, 10 figures, 1 appendix. (v3) Text modified after peer-review process. (v4) 34 pages, 1 appendix, 10 figures. Article accepted to be published at Mathematical Neuroscience and Application

    Scale-invariance of receptive field properties in primary visual cortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our visual system enables us to recognize visual objects across a wide range of spatial scales. The neural mechanisms underlying these abilities are still poorly understood. Size- or scale-independent representation of visual objects might be supported by processing in primary visual cortex (V1). Neurons in V1 are selective for spatial frequency and thus represent visual information in specific spatial wavebands. We tested whether different receptive field properties of neurons in V1 scale with preferred spatial wavelength. Specifically, we investigated the size of the area that enhances responses, i.e., the grating summation field, the size of the inhibitory surround, and the distance dependence of signal coupling, i.e., the linking field.</p> <p>Results</p> <p>We found that the sizes of both grating summation field and inhibitory surround increase with preferred spatial wavelength. For the summation field this increase, however, is not strictly linear. No evidence was found that size of the linking field depends on preferred spatial wavelength.</p> <p>Conclusion</p> <p>Our data show that some receptive field properties are related to preferred spatial wavelength. This speaks in favor of the hypothesis that processing in V1 supports scale-invariant aspects of visual performance. However, not all properties of receptive fields in V1 scale with preferred spatial wavelength. Spatial-wavelength independence of the linking field implies a constant spatial range of signal coupling between neurons with different preferred spatial wavelengths. This might be important for encoding extended broad-band visual features such as edges.</p

    Contextual processing of brightness and color in Mongolian gerbils

    Get PDF
    Brightness and color cues are essential for visually guided behavior. However, for rodents, little is known about how well they do use these cues. We used a virtual reality setup that offers a controlled environment for sensory testing to quantitatively investigate visually guided behavior for achromatic and chromatic stimuli in Mongolian gerbils (Meriones unguiculatus). In two-alternative forced choice tasks, animals had to select target stimuli based on relative intensity or color with respect to a contextual reference. Behavioral performance was characterized using psychometric analysis and probabilistic choice modeling. The analyses revealed that the gerbils learned to make decisions that required judging stimuli in relation to their visual context. Stimuli were successfully recognized down to Weber contrasts as low as 0.1. These results suggest that Mongolian gerbils have the perceptual capacity for brightness and color constancy

    Enhanced tactile acuity through mental states

    Get PDF
    Bodily training typically evokes behavioral and perceptual gains, enforcing neuroplastic processes and affecting neural representations. We investigated the effect on somatosensory perception of a three-day Zen meditation exercise, a purely mental intervention. Tactile spatial discrimination of the right index finger was persistently improved by only 6 hours of mental-sensory focusing on this finger, suggesting that intrinsic brain activity created by mental states can alter perception and behavior similarly to external stimulation

    Unstable Gaze in Functional Dizziness: A Contribution to Understanding the Pathophysiology of Functional Disorders

    Get PDF
    Objective: We are still lacking a pathophysiological mechanism for functional disorders explaining the emergence and manifestation of characteristic, severely impairing bodily symptoms like chest pain or dizziness. A recent hypothesis based on the predictive coding theory of brain function suggests that in functional disorders, internal expectations do not match the actual sensory body states, leading to perceptual dysregulation and symptom perception. To test this hypothesis, we investigated the account of internal expectations and sensory input on gaze stabilization, a physiologically relevant parameter of gaze shifts, in functional dizziness. Methods: We assessed gaze stabilization in eight functional dizziness patients and 11 healthy controls during two distinct epochs of large gaze shifts: during a counter-rotation epoch (CR epoch), where the brain can use internal models, motor planning, and resulting internal expectations to achieve internally driven gaze stabilization; and during an oscillation epoch (OSC epoch), where, due to terminated motor planning, no movement expectations are present, and gaze is stabilized by sensory input alone. Results: Gaze stabilization differed between functional patients and healthy controls only when internal movement expectations were involved [F(1,17) = 14.63, p = 0.001, and partial η(2) = 0.463]: functional dizziness patients showed reduced gaze stabilization during the CR (p = 0.036) but not OSC epoch (p = 0.26). Conclusion: While sensory-driven gaze stabilization is intact, there are marked, well-measurable deficits in internally-driven gaze stabilization in functional dizziness pointing at internal expectations that do not match actual body states. This experimental evidence supports the perceptual dysregulation hypothesis of functional disorders and is an important step toward understanding the underlying pathophysiology

    Data management routines for reproducible research using the G-Node Python Client library

    Get PDF
    Structured, efficient, and secure storage of experimental data and associated meta-information constitutes one of the most pressing technical challenges in modern neuroscience, and does so particularly in electrophysiology. The German INCF Node aims to provide open-source solutions for this domain that support the scientific data management and analysis workflow, and thus facilitate future data access and reproducible research. G-Node provides a data management system, accessible through an application interface, that is based on a combination of standardized data representation and flexible data annotation to account for the variety of experimental paradigms in electrophysiology. The G-Node Python Library exposes these services to the Python environment, enabling researchers to organize and access their experimental data using their familiar tools while gaining the advantages that a centralized storage entails. The library provides powerful query features, including data slicing and selection by metadata, as well as fine-grained permission control for collaboration and data sharing. Here we demonstrate key actions in working with experimental neuroscience data, such as building a metadata structure, organizing recorded data in datasets, annotating data, or selecting data regions of interest, that can be automated to large degree using the library. Compliant with existing de-facto standards, the G-Node Python Library is compatible with many Python tools in the field of neurophysiology and thus enables seamless integration of data organization into the scientific data workflow

    odMLtables: A User-Friendly Approach for Managing Metadata of Neurophysiological Experiments

    Get PDF
    An essential aspect of scientific reproducibility is a coherent and complete acquisition of metadata along with the actual data of an experiment. The high degree of complexity and heterogeneity of neuroscience experiments requires a rigorous management of the associated metadata. The odML framework represents a solution to organize and store complex metadata digitally in a hierarchical format that is both human and machine readable. However, this hierarchical representation of metadata is difficult to handle when metadata entries need to be collected and edited manually during the daily routines of a laboratory. With odMLtables, we present an open-source software solution that enables users to collect, manipulate, visualize, and store metadata in tabular representations (in xls or csv format) by providing functionality to convert these tabular collections to the hierarchically structured metadata format odML, and to either extract or merge subsets of a complex metadata collection. With this, odMLtables bridges the gap between handling metadata in an intuitive way that integrates well with daily lab routines and commonly used software products on the one hand, and the implementation of a complete, well-defined metadata collection for the experiment in a standardized format on the other hand. We demonstrate usage scenarios of the odMLtables tools in common lab routines in the context of metadata acquisition and management, and show how the tool can assist in exploring published datasets that provide metadata in the odML format
    corecore