32 research outputs found

    Frequency and damping of hydrodynamic modes in a trapped Bose-condensed gas

    Full text link
    Recently it was shown that the Landau-Khalatnikov two-fluid hydrodynamics describes the collision-dominated region of a trapped Bose condensate interacting with a thermal cloud. We use these equations to discuss the low frequency hydrodynamic collective modes in a trapped Bose gas at finite temperatures. We derive a variational expressions based on these equations for both the frequency and damping of collective modes. A new feature is our use of frequency-dependent transport coefficients, which produce a natural cutoff by eliminating the collisionless low-density tail of the thermal cloud. Above the superfluid transition, our expression for the damping in trapped inhomogeneous gases is analogous to the result first obtained by Landau and Lifshitz for uniform classical fluids. We also use the moment method to discuss the crossover from the collisionless to the hydrodynamic region. Recent data for the monopole-quadrupole mode in the hydrodynamic region of a trapped gas of metastable 4^4He is discussed. We also present calculations for the damping of the analogous m=0m=0 monopole-quadrupole condensate mode in the superfluid phase.Comment: 22 pages, 10 figures, submitted to Physical Review

    Perspectives in Global Helioseismology, and the Road Ahead

    Get PDF
    We review the impact of global helioseismology on key questions concerning the internal structure and dynamics of the Sun, and consider the exciting challenges the field faces as it enters a fourth decade of science exploitation. We do so with an eye on the past, looking at the perspectives global helioseismology offered in its earlier phases, in particular the mid-to-late 1970s and the 1980s. We look at how modern, higher-quality, longer datasets coupled with new developments in analysis, have altered, refined, and changed some of those perspectives, and opened others that were not previously available for study. We finish by discussing outstanding challenges and questions for the field.Comment: Invited review; to appear in Solar Physics (24 pages, 6 figures

    The determination and comparison of the 16S rRNA gene sequences of the genus **Psudomonas** (sensu stricto) and estimation of the natural intrageneric relationships

    No full text
    As a consolidated effort on the part of several laboratories, partial and nearly complete sequence determinations of 16S rRNA genes have been applied as one of several analytical methods in a polyphasic study of the pseudomonads. Nearly-complete sequences have been determined of the PCR-amplified 16S rRNA genes of 21 species of the genus Pseudomonas (sensu stricto), including multiple attains of most species. Phylogenetic branching orders and the natural intrageneric relationships among the species have been infrared through sequence comparisons and cluster analysis and have not shown any obvious recognizable correlation with results derived through standard phenotypic criteria commonly used to group ;he species. This paper also focuses on the ability of 16S rRNA gene sequences, particularly the hypervariable sequence regions, to be used as nested identification markers and as target sites for the development of 16S rRNA sequence-based strategies for the identification of species of the genus Pseudomonas

    Monitoring for atrial fibrillation prior to patent foramen ovale closure after cryptogenic stroke

    No full text
    Background: Patients who had a cryptogenic stroke (CS) suspected to be causally related to a patent foramen ovale (PFO) are candidates for percutaneous PFO closure. In such patients, it is important to screen for atrial fibrillation (AF). Limited guidance is available regarding AF monitoring strategies in CS patients with PFO addressing optimal monitoring technology and duration. Aim: To provide a narrative review of cardiac rhythm monitoring in CS patients considered for PFO closure, including current practices, stroke recurrences after CS, findings from monitoring studies in CS patients, and predictors for AF detection published in the literature. To propose a personalized strategy for cardiac monitoring in CS patients, accounting for aspects predicting AF detection. Summary of review: AF detection in CS patients is predicted by age, left atrial enlargement, prolonged PR interval, frequent premature atrial contractions, interatrial conduction block, diabetes, prior brain infarctions, leukoaraiosis, elevated B-type natriuretic peptide (BNP)/N-terminal pro B-type natriuretic peptide (NT-proBNP) levels, and a family history of AF, as well as composed scores (e.g. CHA2DS2-VASc, atrial fibrillation in embolic stroke of undetermined source (AF-ESUS)). The causal role of the PFO may be accounted for by the risk of paradoxical embolism (RoPE) score and/or the PFO-Associated Stroke Causal Likelihood (PASCAL) classification. Conclusion: A personalized approach to AF detection in CS patients is proposed, accounting for the likelihood of AF detection and aimed at obtaining sufficient confidence regarding the absence of AF in patients considered for PFO closure. In addition, the impact of high-risk PFO features on the monitoring strategy is discussed. © 2022 World Stroke Organization
    corecore