219 research outputs found

    Efficacy and safety of oral methazolamide in patients with type 2 diabetes: A 24-week, placebo-controlled, double-blind study

    Get PDF
    OBJECTIVE To evaluate the safety and efficacy of methazolamide as a potential therapy for type 2 diabetes. RESEARCH DESIGN AND METHODS This double-blind, placebo-controlled study randomized 76 patients to oral methazolamide (40 mg b.i.d.) or placebo for 24 weeks. The primary efficacy end point for methazolamide treatment was a placebo-corrected reduction in HbA1c from baseline after 24 weeks (ΔHbA1c). RESULTS Mean ± SD baseline HbA1c was 7.1 ± 0.7% (54 ± 5 mmol/mol; n = 37) and 7.4 ± 0.6% (57 ± 5 mmol/mol; n = 39) in the methazolamide and placebo groups, respectively. Methazolamide treatment was associated with a ΔHbA1c of –0.39% (95% CI –0.82, 0.04; P < 0.05) (–4.3 mmol/mol [–9.0, 0.4]), an increase in the proportion of patients achieving HbA1c ≤6.5% (48 mmol/mol) from 8 to 33%, a rapid reduction in alanine aminotransferase (∼10 units/L), and weight loss (2%) in metformin-cotreated patients. CONCLUSIONS Methazolamide is the archetype for a new intervention in type 2 diabetes with clinical benefits beyond glucose control

    Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a P-glycoprotein

    Get PDF
    To gain more insight into the pharmacological role of endogenous P-glycoprotein in the metabolism of the widely used substrate drug doxorubicin, we have studied the plasma pharmacokinetics, tissue distribution and excretion of this compound in mdr1a(–/– and wild-type mice. Doxorubicin was administered as an i.v. bolus injection at a dose level of 5 mg kg−1. Drug and metabolite concentrations were determined in plasma, tissues, urine and faeces by high-performance liquid chromatography. In comparison with wild-type mice, the terminal half-life and the area under the plasma concentration–time curve of doxorubicin in it>mdr1a(–/–) mice were 1.6- and 1.2-fold higher respectively.The retention of both doxorubicin and its metabolite doxorubicinol in the hearts of mdr1a(–/–) mice was substantially prolonged. In addition, a significantly increased drug accumulation was observed in the brain and the liver of mdr1a(–/–) mice. The relative accumulation in most other tissues was not or only slightly increased. The differences in cumulative faecal and urinary excretion of doxorubicin and metabolites between both types of mice were small. These experiments demonstrate that the absence of mdr1a P-glycoprotein only slightly alters the plasma pharmacokinetics of oxorubicin. Furthermore, the substantially prolonged presence of both doxorubicin and doxorubicinol in cardiac tissue of mdr1a(–/–) mice suggests that a blockade of endogenous P-glycoprotein in patients, for example by a reversal agent, may enhance the risk of cardiotoxicity upon administration of doxorubicin. © 1999 Cancer Research Campaig

    Unchanged incidence and increased survival in children with neuroblastoma in Denmark 1981–2000: a population-based study

    Get PDF
    Treatment results for neuroblastoma in Denmark have been poorer than in other Nordic countries, so we investigated whether a change in incidence, stage distribution and survival had occurred between 1981 and 2000. Clinical data were retrieved from the medical charts of 160 children <15 years of age with extra-cranial neuroblastoma (n=139) or ganglioneuroblastoma (n=21) diagnosed in Denmark between 1981 and 2000. The minimal follow-up time was 52 months. Statistical analyses were performed in STATA. The incidence was 8.55 per million children below 15 years of age (world standard 9.6) and 42.6 per million children below 12 months of age, and it has remained unchanged since 1970. The median age at diagnosis was 27 months. In all, 32% of the children were aged below 12 months at diagnosis, 53% had metastatic disease and in 12% the diagnosis was made incidentally. Prognostic factors such as age, stage and site of primary tumour were the same as in other studies and did not change. During the study period, the mortality rate decreased steadily, and the 5-year survival rate increased from 38% in 1981–1985 to 59% in 1996–2000, corresponding to the level found in other Western countries. Increased survival was also seen in children with metastatic disease. Participation in international studies, better supportive care and possibly postoperative autologous stem cell transplantation may have contributed to the increased survival

    In vivo efficacy of XR9051, a potent modulator of P-glycoprotein mediated multidrug resistance

    Get PDF
    Overexpression of P-glycoprotein (P-gp) is a potential cause of multidrug resistance (MDR) in tumours. We have previously reported that XR9051 (N-(4-(2-(6,7-dimethoxy-1,2,3,4-tetrahydro-2-isoquinolyl)ethyl)phenyl)-3-((3Z,6Z)-6-benzylidene-1-methyl-2,5-dioxo-3-piperazinylidene)methylbenzamide) is a potent and specific inhibitor of P-gp, which reverses drug resistance in several murine and human MDR cell lines. In this study we have evaluated the in vivo efficacy of this novel modulator in a panel of murine and human tumour models and examined its pharmacokinetic profile. Efficacy studies in mice bearing MDR syngeneic tumours (P388/DX Johnson, MC26) or human tumour xenografts (A2780AD, CH1/DOXr, H69/LX) demonstrated that co-administration of XR9051 significantly potentiated the anti-tumour activity of a range of cytotoxic drugs. This modulatory activity was observed following parenteral and oral co-administration of XR9051. In addition, the combination schedules were well-tolerated. Following intravenous administration in mice, XR9051 is rapidly distributed and accumulates in tumours and other tissues. In addition, the compound is well-absorbed after oral administration. These data suggest that XR9051 has the potential for reversing clinical MDR mediated by P-glycoprotien. © 1999 Cancer Research Campaig

    Modern insulation materials for warming of walls

    Get PDF
    Biodiversity hotspots understandably attract considerable conservation attention. However, deserts are rarely viewed as conservation priority areas, due to their relatively low productivity, yet these systems are home to unique species, adapted to harsh and highly variable environments. While global attention has been focused on hotspots, the world's largest tropical desert, the Sahara, has suffered a catastrophic decline in megafauna. Of 14 large vertebrates that have historically occurred in the region, four are now extinct in the wild, including the iconic scimitar-horned oryx (Oryx dammah). The majority has disappeared from more than 90% of their Saharan range, including addax (Addax nasomaculatus), dama gazelle (Nanger dama) and Saharan cheetah (Acinonyx jubatus hecki) - all now on the brink of extinction. Greater conservation support and scientific attention for the region might have helped to avert these catastrophic declines. The Sahara serves as an example of a wider historical neglect of deserts and the human communities who depend on them. The scientific community can make an important contribution to conservation in deserts by establishing baseline information on biodiversity and developing new approaches to sustainable management of desert species and ecosystems. Such approaches must accommodate mobility of both people and wildlife so that they can use resources most efficiently in the face of low and unpredictable rainfall. This is needed to enable governments to deliver on their commitments to halt further degradation of deserts and to improve their status for both biodiversity conservation and human well-being. Only by so-doing will deserts be able to support resilient ecosystems and communities that are best able to adapt to climate change. © 2013 John Wiley & Sons Ltd

    Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins

    Get PDF
    We here describe four proteins of Chlamydia pneumoniae, which might play a role in host-pathogen interaction. The hypothetical bacterial proteins CPn0708 and CPn0712 were detected in Chlamydia pneumoniae-infected host cells by indirect immunofluorescence tests with polyclonal antisera raised against the respective proteins. While CPn0708 was localized within the inclusion body, CPn0712 was identified in the inclusion membrane and in the surrounding host cell cytosol. CPn0712 colocalizes with actin, indicating its possible interaction with components of the cytoskeleton. Investigations on CPn0809 and CPn1020, two Chlamydia pneumoniae proteins previously described to be secreted into the host cell cytosol, revealed colocalization with calnexin, a marker for the ER. Neither CPn0712, CPn0809 nor CPn1020 were able to inhibit host cell apoptosis. Furthermore, transient expression of CPn0712, CPn0809 and CPn1020 by the host cell itself had no effect on subsequent infection with Chlamydia pneumoniae. However, microarray analysis of CPn0712-expressing host cells revealed six host cell genes which were regulated as in host cells infected with Chlamydia pneumoniae, indicating the principal usefulness of heterologous expression to study the effect of Chlamydia pneumoniae proteins on host cell modulation

    Splitting or lumping? A conservation dilemma exemplified by the critically endangered Dama Gazelle (Nanger dama)

    Get PDF
    Managers of threatened species often face the dilemma of whether to keep populations separate to conserve local adaptations and minimize the risk of outbreeding, or whether to manage populations jointly to reduce loss of genetic diversity and minimise inbreeding. In this study we examine genetic relatedness and diversity in three of the five last remaining wild populations of dama gazelle and a number of captive populations, using mtDNA control region and cytochrome b data. Despite the sampled populations belonging to the three putative subspecies, which are delineated according to phenotypes and geographical location, we find limited evidence for phylogeographical structure within the data and no genetic support for the putative subspecies. In the light of these data we discuss the relevance of inbreeding depression, outbreeding depression, adaptive variation, genetic drift, and phenotypic variation to the conservation of the dama gazelle and make some recommendations for its future conservation management. The genetic data suggest that the best conservation approach is to view the dama gazelle as a single species without subspecific divisions

    2′-O Methylation of the Viral mRNA Cap by West Nile Virus Evades Ifit1-Dependent and -Independent Mechanisms of Host Restriction In Vivo

    Get PDF
    Prior studies have shown that 2′-O methyltransferase activity of flaviviruses, coronaviruses, and poxviruses promotes viral evasion of Ifit1, an interferon-stimulated innate immune effector protein. Viruses lacking 2′-O methyltransferase activity exhibited attenuation in primary macrophages that was rescued in cells lacking Ifit1 gene expression. Here, we examined the role of Ifit1 in restricting pathogenesis in vivo of wild type WNV (WNV-WT) and a mutant in the NS5 gene (WNV-E218A) lacking 2′-O methylation of the 5′ viral RNA cap. While deletion of Ifit1 had marginal effects on WNV-WT pathogenesis, WNV-E218A showed increased replication in peripheral tissues of Ifit1−/− mice after subcutaneous infection, yet this failed to correlate with enhanced infection in the brain or lethality. In comparison, WNV-E218A was virulent after intracranial infection as judged by increased infection in different regions of the central nervous system (CNS) and a greater than 16,000-fold decrease in LD50 values in Ifit1−/− compared to wild type mice. Ex vivo infection experiments revealed cell-type specific differences in the ability of an Ifit1 deficiency to complement the replication defect of WNV-E218A. In particular, WNV-E218A infection was impaired in both wild type and Ifit1−/− brain microvascular endothelial cells, which are believed to participate in blood-brain barrier (BBB) regulation of virus entry into the CNS. A deficiency of Ifit1 also was associated with increased neuronal death in vivo, which was both cell-intrinsic and mediated by immunopathogenic CD8+ T cells. Our results suggest that virulent strains of WNV have largely evaded the antiviral effects of Ifit1, and viral mutants lacking 2′-O methylation are controlled in vivo by Ifit1-dependent and -independent mechanisms in different cell types

    Antagonism of Host Antiviral Responses by Kaposi's Sarcoma-Associated Herpesvirus Tegument Protein ORF45

    Get PDF
    Virus infection of a cell generally evokes an immune response by the host to defeat the intruder in its effort. Many viruses have developed an array of strategies to evade or antagonize host antiviral responses. Kaposi's sarcoma-associated herpesvirus (KSHV) is demonstrated in this report to be able to prevent activation of host antiviral defense mechanisms upon infection. Cells infected with wild-type KSHV were permissive for superinfection with vesicular stomatitis virus (VSV), suggesting that KSHV virions fail to induce host antiviral responses. We previously showed that ORF45, a KSHV immediate-early protein as well as a tegument protein of virions, interacts with IRF-7 and inhibits virus-mediated type I interferon induction by blocking IRF-7 phosphorylation and nuclear translocation (Zhu et al., Proc. Natl. Acad. Sci. USA. 99:5573-5578, 2002). Here, using an ORF45-null recombinant virus, we demonstrate a profound role of ORF45 in inhibiting host antiviral responses. Infection of cells with an ORF45-null mutant recombinant KSHV (BAC-stop45) triggered an immune response that resisted VSV super-infection, concomitantly associated with appreciable increases in transcription of type I IFN and downstream anti-viral effector genes. Gain-of-function analysis showed that ectopic expression of ORF45 in human fibroblast cells by a lentivirus vector decreased the antiviral responses of the cells. shRNA-mediated silencing of IRF-7, that predominantly regulates both the early and late phase induction of type I IFNs, clearly indicated its critical contribution to the innate antiviral responses generated against incoming KSHV particles. Thus ORF45 through its targeting of the crucial IRF-7 regulated type I IFN antiviral responses significantly contributes to the KSHV survival immediately following a primary infection allowing for progression onto subsequent stages in its life-cycle
    corecore