26 research outputs found
Coxiella burnetii Phagocytosis Is Regulated by GTPases of the Rho Family and the RhoA Effectors mDia1 and ROCK
The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the host´s cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-ΔN3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that processFil: Salinas Ojeda, Romina Paola. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Mendoza. Instituto de HistologÃa y EmbriologÃa de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de HistologÃa y EmbriologÃa de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Ortiz Flores, Rodolfo Matias. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Mendoza. Instituto de HistologÃa y EmbriologÃa de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de HistologÃa y EmbriologÃa de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Distel, Jesús Sebastián. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Mendoza. Instituto de HistologÃa y EmbriologÃa de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de HistologÃa y EmbriologÃa de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Aguilera, Milton Osmar. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Mendoza. Instituto de HistologÃa y EmbriologÃa de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de HistologÃa y EmbriologÃa de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Colombo, Maria Isabel. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Mendoza. Instituto de HistologÃa y EmbriologÃa de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de HistologÃa y EmbriologÃa de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Beron, Walter. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Mendoza. Instituto de HistologÃa y EmbriologÃa de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de HistologÃa y EmbriologÃa de Mendoza Dr. Mario H. Burgos; Argentin
Identification of genes required for soil survival in Burkholderia thailandensis by transposon-directed insertion site sequencing.
Transposon-directed insertion site sequencing was used to identify genes required by Burkholderia thailandensis to survive in plant/soil microcosms. A total of 1,153 genetic loci fulfilled the criteria as being likely to encode survival characteristics. Of these, 203 (17.6 %) were associated with uptake and transport systems; 463 loci (40.1 %) coded for enzymatic properties, 99 of these (21.4 %) had reduction/oxidation functions; 117 (10.1 %) were gene regulation or sensory loci; 61 (5.3 %) encoded structural proteins found in the cell envelope or with enzymatic activities related to it, distinct from these, 46 (4.0 %) were involved in chemotaxis and flagellum, or pilus synthesis; 39 (3.4 %) were transposase enzymes or were bacteriophage-derived; and 30 (2.6 %) were involved in the production of antibiotics or siderophores. Two hundred and twenty genes (19.1 %) encoded hypothetical proteins or those of unknown function. Given the importance of motility and pilus formation in microcosm persistence the nature of the colonization of the rhizosphere was examined by confocal microscopy. Wild type B. thailandensis expressing red fluorescent protein was inoculated into microcosms. Even though the roots had been washed, the bacteria were still present but they were motile with no attachment having taken place, perhaps being retained in a biofilm
Development of Functional and Molecular Correlates of Vaccine-Induced Protection for a Model Intracellular Pathogen, F. tularensis LVS
In contrast with common human infections for which vaccine efficacy can be evaluated directly in field studies, alternative strategies are needed to evaluate efficacy for slowly developing or sporadic diseases like tularemia. For diseases such as these caused by intracellular bacteria, serological measures of antibodies are generally not predictive. Here, we used vaccines varying in efficacy to explore development of clinically useful correlates of protection for intracellular bacteria, using Francisella tularensis as an experimental model. F. tularensis is an intracellular bacterium classified as Category A bioterrorism agent which causes tularemia. The primary vaccine candidate in the U.S., called Live Vaccine Strain (LVS), has been the subject of ongoing clinical studies; however, safety and efficacy are not well established, and LVS is not licensed by the U.S. FDA. Using a mouse model, we compared the in vivo efficacy of a panel of qualitatively different Francisella vaccine candidates, the in vitro functional activity of immune lymphocytes derived from vaccinated mice, and relative gene expression in immune lymphocytes. Integrated analyses showed that the hierarchy of protection in vivo engendered by qualitatively different vaccines was reflected by the degree of lymphocytes' in vitro activity in controlling the intramacrophage growth of Francisella. Thus, this assay may be a functional correlate. Further, the strength of protection was significantly related to the degree of up-regulation of expression of a panel of genes in cells recovered from the assay. These included IFN-γ, IL-6, IL-12Rβ2, T-bet, SOCS-1, and IL-18bp. Taken together, the results indicate that an in vitro assay that detects control of bacterial growth, and/or a selected panel of mediators, may ultimately be developed to predict the outcome of vaccine efficacy and to complement clinical trials. The overall approach may be applicable to intracellular pathogens in general