78 research outputs found

    Cassiterite oxygen isotopes in magmatic-hydrothermal systems: in situ microanalysis, fractionation factor, and applications

    Get PDF
    Tin and tungsten are important metals for the industrializing society. Deciphering the origin and evolution of hydrothermal fluids responsible for their formation is critical to underpin genetic models of ore formation. Traditional approaches obtain isotopic information mainly from bulk analysis of both ore and gangue minerals, or less frequently from in situ analysis of gangue minerals, which either bear inherited complexities and uncertainties or are indirect constraints. Hence, directly obtaining isotopic information from ore minerals such as cassiterite by in situ techniques is warranted. However, this has been hampered by challenges from both analytical and applicational aspects. In this study, we first demonstrate a lack of crystallographic orientation effects during cassiterite ion microprobe oxygen isotope analysis. Along with our newly developed matrix-matched reference material, the Yongde-Cst, which has a recommended δ18O value of 1.36 ± 0.16‰ (VSMOW) as defined by gas source isotope ratio mass spectrometry, in situ oxygen isotope analysis of cassiterite now is possible. We further refine the oxygen isotope fractionation (1000 ln α) for quartz-cassiterite by first-principles calculations, which is given by the equation of 1.259 × 106/T2 + 8.15 × 103/T − 4.72 (T is temperature in Kelvin). The 1000 ln α for quartz-cassiterite has a sensitive response to temperature, and makes cassiterite-quartz an excellent mineral pair in oxygen isotope thermometry, as described by the equation of T (℃) = 2427 × (δ18Oqtz − δ18Ocst)−0.4326 − 492.4. Using the well-established 1000 ln α of quartz-water, 1000 ln α of cassiterite-water is derived as 2.941 × 106/T2 − 11.45 × 103/T + 4.72 (T in Kelvin), which shows a weak response to temperature. This makes cassiterite an ideal mineral from which to derive δ18O of fluids as robust temperature estimates are no longer a prerequisite. We have applied oxygen isotope analysis to cassiterite samples from six Sn(-W) deposits in China. The results show considerable variability in δ18O values both within a single deposit and among studied deposits. Combining the δ18O of cassiterite samples and the equilibrium oxygen isotope fractionation, we find that the δ18O values of ore-forming fluids show a strong magmatic affinity with variable but mostly no to low degree involvements (~0-10%) of meteoric water, hence our results invite a reassessment on the extent and role of meteoric water in Sn-W mineralization. This study demonstrates that in situ oxygen isotope analysis of cassiterite is a promising tool to refine sources of ore-forming fluids, and to decode hydrothermal dynamics controlling tin and tungsten mineralization

    Effect of redox properties on selective oxidation of propane to acrolein over molybdate-based catalyst

    Get PDF
    The Ag-0.3 Mo0.6Ox and Ce0.1Ag0.3MoP0.6Oy catalysts were prepared and characterized by XRD, TPR, LRS, XPS and EPR techniques. And the catalytic performance of the catalysts for selective oxidation of propane to acrolein was studied. The results showed that the higher propane conversion with higher selectivity for acrolein was obtained on Ce0.1Ag0.3MoP0.6Oy catalyst, In addition, the possible intermediates, propene and propanol, were favorable for the transformation to acrolein on Ce0.1Ag0.3MoP0.6Oy catalyst. After Ce was doped in Ag0.3MoP0.6Ox, the CeO2 and Ce2MoO6 could be measured. The addition of Ce to Ag0.3MoP0.6Ox improved the reducibility and the concentration of Mo5+ owing to the formation of redox couple Mo6+ + Ce3+ === Mo5+ + Ce4+, leading to the higher propane conversion and the higher selectivity for acrolein

    Dynamic structure of Mo-O species in Ag-Mo-P-O catalyst for oxidative dehydrogenation of propane

    Get PDF
    In order to understand the relationship between catalytic performance and structure of Ag-Mo-P-O caalyst for oxidative dehydrogenation of propane, the dynamic structure of Mo-O species in the catalyst was studied by in-situ confocal microprobe LRS and XRD. The catalyst was mainly Composed Of MoO3 and AgMoO2PO4 phases. The Mo-O species was monitored by in-situ confocal microprobe LRS in different atmosphere. 3C(3)H(8)-lO(2)-N-2 flow, only the Raman hands of Mo-O species in AgMoO2PO4 were detected at 773 K. In O-2 flow, the Mo-O species in MoO3 and in AgMoO2PO4 could be detected at all the investigated temperatures. In 7C(3)H(8)-43N(2) flow, the intensity of Raman bands belonging to Mo-O species in both MoO3 and AgMoO2PO4 gradually decreased and finally disappeared as temperature increasing. At that time, the catalyst was exposed to 3C(3)H(8)-lO(2)-4N(2) flow, the Raman bands belonging to Mo-O species in AgMoO2PO4 was detected. Subsequently, the catalyst was switched to O-2 flow, the Raman bands of Mo-O species in MoO3 and in AgMoO2PO4 were detected again, The results of catalytic test showed higher conversion of propane with higher selectivity for propene in 3C(3)H(8)-IO2-4N(2) flow at 773 K. The transformation of Mo-O species is due to the intrinsic properties of Mo-O species. The Mo-O species of AgMoO2PO4 might be active species for Oxidative dehydrogenation of propane

    Coherent magnetic semiconductor nanodot arrays

    Get PDF
    In searching appropriate candidates of magnetic semiconductors compatible with mainstream Si technology for future spintronic devices, extensive attention has been focused on Mn-doped Ge magnetic semiconductors. Up to now, lack of reliable methods to obtain high-quality MnGe nanostructures with a desired shape and a good controllability has been a barrier to make these materials practically applicable for spintronic devices. Here, we report, for the first time, an innovative growth approach to produce self-assembled and coherent magnetic MnGe nanodot arrays with an excellent reproducibility. Magnetotransport experiments reveal that the nanodot arrays possess giant magneto-resistance associated with geometrical effects. The discovery of the MnGe nanodot arrays paves the way towards next-generation high-density magnetic memories and spintronic devices with low-power dissipation

    Malignant B Cells Induce the Conversion of CD4+CD25− T Cells to Regulatory T Cells in B-Cell Non-Hodgkin Lymphoma

    Get PDF
    Recent evidence has demonstrated that regulatory T cells (Treg) were enriched in the tumor sites of patients with B-cell non-Hodgkin lymphoma (NHL). However, the causes of enrichment and suppressive mechanisms need to be further elucidated. Here we demonstrated that CD4+CD25+FoxP3+CD127lo Treg were markedly increased and their phenotypes were different in peripheral blood (PB) as well as bone marrow (BM) from newly diagnosed patients with B-cell NHL compared with those from healthy volunteers (HVs). Involved lymphatic tissues also showed higher frequencies of Treg than benign lymph nodes. Moreover, the frequencies of Treg were significantly higher in involved lymphatic tissues than those from PB as well as BM in the same patients. Suppression mediated by CD4+CD25+ Treg co-cultured with allogeneic CFSE-labeled CD4+CD25− responder cells was also higher in involved lymphatic tissues from B-cell NHL than that mediated by Treg from HVs. In addition, we found that malignant B cells significantly induced FoxP3 expression and regulatory function in CD4+CD25− T cells in vitro. In contrast, normal B cells could not induce the conversion of CD4+CD25− T cells to Treg. We also showed that the PD-1/B7-H1 pathway might play an important role in Treg induction. Taken together, our results suggest that malignant B cells induce the conversion of CD4+CD25− T cells to Treg, which may play a role in the pathogenesis of B-cell NHL and represent a promising therapeutic target

    DCs Pulsed with Novel HLA-A2-Restricted CTL Epitopes against Hepatitis C Virus Induced a Broadly Reactive Anti-HCV-Specific T Lymphocyte Response

    Get PDF
    OBJECTIVE: To determine the capacity of dendritic cells (DCs) loaded with single or multiple-peptide mixtures of novel hepatitis C virus (HCV) epitopes to stimulate HCV-specific cytotoxic T lymphocyte (CTL) effector functions. METHODS: A bioinformatics approach was used to predict HLA-A2-restricted HCV-specific CTL epitopes, and the predicted peptides identified from this screen were synthesized. Subsequent IFN-γ ELISPOT analysis detected the stimulating function of these peptides in peripheral blood mononuclear cells (PBMCs) from both chronic and self-limited HCV infected subjects (subjects exhibiting spontaneous HCV clearance). Mature DCs, derived in vitro from CD14(+) monocytes harvested from the study subjects by incubation with appropriate cytokine cocktails, were loaded with novel peptide or epitope peptide mixtures and co-cultured with autologous T lymphocytes. Granzyme B (GrB) and IFN-γ ELISPOT analysis was used to test for epitope-specific CTL responses. T-cell-derived cytokines contained in the co-cultured supernatant were detected by flow cytometry. RESULTS: We identified 7 novel HLA-A2-restricted HCV-specific CTL epitopes that increased the frequency of IFN-γ-producing T cells compared to other epitopes, as assayed by measuring spot forming cells (SFCs). Two epitopes had the strongest stimulating capability in the self-limited subjects, one found in the E2 and one in the NS2 region of HCV; five epitopes had a strong stimulating capacity in both chronic and self-limited HCV infection, but were stronger in the self-limited subjects. They were distributed in E2, NS2, NS3, NS4, and NS5 regions of HCV, respectively. We also found that mDCs loaded with novel peptide mixtures could significantly increase GrB and IFN-γ SFCs as compared to single peptides, especially in chronic HCV infection subjects. Additionally, we found that DCs pulsed with multiple epitope peptide mixtures induced a Th1-biased immune response. CONCLUSIONS: Seven novel and strongly stimulating HLA-A2-restricted HCV-specific CTL epitopes were identified. Furthermore, DCs loaded with multiple-epitope peptide mixtures induced epitope-specific CTLs responses

    Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: A pooled analysis of 1018 population-based measurement studies with 88.6 million participants

    Get PDF
    Background: Change in the prevalence of raised blood pressure could be due to both shifts in the entire distribution of blood pressure (representing the combined effects of public health interventions and secular trends) and changes in its high-blood-pressure tail (representing successful clinical interventions to control blood pressure in the hypertensive population). Our aim was to quantify the contributions of these two phenomena to the worldwide trends in the prevalence of raised blood pressure. Methods: We pooled 1018 population-based studies with blood pressure measurements on 88.6 million participants from 1985 to 2016. We first calculated mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP) and prevalence of raised blood pressure by sex and 10-year age group from 20-29 years to 70-79 years in each study, taking into account complex survey design and survey sample weights, where relevant. We used a linear mixed effect model to quantify the association between (probittransformed) prevalence of raised blood pressure and age-group- and sex-specific mean blood pressure. We calculated the contributions of change in mean SBP and DBP, and of change in the prevalence-mean association, to the change in prevalence of raised blood pressure. Results: In 2005-16, at the same level of population mean SBP and DBP, men and women in South Asia and in Central Asia, the Middle East and North Africa would have the highest prevalence of raised blood pressure, and men and women in the highincome Asia Pacific and high-income Western regions would have the lowest. In most region-sex-age groups where the prevalence of raised blood pressure declined, one half or more of the decline was due to the decline in mean blood pressure. Where prevalence of raised blood pressure has increased, the change was entirely driven by increasing mean blood pressure, offset partly by the change in the prevalence-mean association. Conclusions: Change in mean blood pressure is the main driver of the worldwide change in the prevalence of raised blood pressure, but change in the high-blood-pressure tail of the distribution has also contributed to the change in prevalence, especially in older age groups

    Prediction of Protein Domain with mRMR Feature Selection and Analysis

    Get PDF
    The domains are the structural and functional units of proteins. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop effective methods for predicting the protein domains according to the sequences information alone, so as to facilitate the structure prediction of proteins and speed up their functional annotation. However, although many efforts have been made in this regard, prediction of protein domains from the sequence information still remains a challenging and elusive problem. Here, a new method was developed by combing the techniques of RF (random forest), mRMR (maximum relevance minimum redundancy), and IFS (incremental feature selection), as well as by incorporating the features of physicochemical and biochemical properties, sequence conservation, residual disorder, secondary structure, and solvent accessibility. The overall success rate achieved by the new method on an independent dataset was around 73%, which was about 28–40% higher than those by the existing method on the same benchmark dataset. Furthermore, it was revealed by an in-depth analysis that the features of evolution, codon diversity, electrostatic charge, and disorder played more important roles than the others in predicting protein domains, quite consistent with experimental observations. It is anticipated that the new method may become a high-throughput tool in annotating protein domains, or may, at the very least, play a complementary role to the existing domain prediction methods, and that the findings about the key features with high impacts to the domain prediction might provide useful insights or clues for further experimental investigations in this area. Finally, it has not escaped our notice that the current approach can also be utilized to study protein signal peptides, B-cell epitopes, HIV protease cleavage sites, among many other important topics in protein science and biomedicine
    corecore