3,177 research outputs found

    The Accretion Flows and Evolution of Magnetic Cataclysmic Variables

    Full text link
    We have used a model of magnetic accretion to investigate the accretion flows of magnetic cataclysmic variables. Numerical simulations demonstrate that four types of flow are possible: discs, streams, rings and propellers. The fundamental observable determining the accretion flow, for a given mass ratio, is the spin-to-orbital period ratio of the system. If IPs are accreting at their equilibrium spin rates, then for a mass ratio of 0.5, those with Pspin/Porb < 0.1 will be disc-like, those with 0.1 < Pspin/Porb < 0.6 will be stream-like, and those with Pspin/Porb ~ 0.6 will be ring-like. The spin to orbital period ratio at which the systems transition between these flow types increases as the mass ratio of the stellar components decreases. For the first time we present evolutionary tracks of mCVs which allow investigation of how their accretion flow changes with time. As systems evolve to shorter orbital periods and smaller mass ratios, in order to maintain spin equilibrium, their spin-to-orbital period ratio will generally increase. As a result, the relative occurrence of ring-like flows will increase, and the occurrence of disc-like flows will decrease, at short orbital periods. The growing number of systems observed at high spin-to-orbital period ratios with orbital periods below 2h, and the observational evidence for ring-like accretion in EX Hya, are fully consistent with this picture.Comment: Accepted for publication in ApJ. 6 figures - included here at low resolutio

    Magnetic Cataclysmic Variable Accretion Flows

    Get PDF
    We have used a magnetic accretion model to investigate the accretion flows of magnetic cataclysmic variables (mCVs) throughout a range of parameter space. The results of our numerical simulations demonstrate that broadly four types of flow are possible: discs, streams, rings and propellers. We show that the equilibrium spin periods in asynchronous mCVs, for a given orbital period and magnetic moment, occur where the flow changes from a type characterised by spin-up (i.e. disc or stream) to one characterised by spin-down (i.e. propeller or ring). 'Triple points' occur in the plane of spin-to-orbital period ratio versus magnetic moment, at which stream-disc-propeller flows or stream-ring-propeller flows can co-exist. The first of these is identified as corresponding to when the corotation radius is equal to the circularisation radius, and the second as where the corotation radius is equal to the distance from white dwarf to the L1 point. If mCVs are accreting at their equilibrium spin rates, then for a mass ratio of 0.5, those with Pspin/Porb < 0.1 will be disc-like, those with 0.1 < Pspin/Porb < 0.5 will be stream-like, and those with Pspin/Porb ~ 0.5 will be ring-like. In each case, some material is also lost from the binary in order to maintain angular momentum balance. The spin to orbital period ratio at which the systems transition between these flow types decreases as the mass ratio of the stellar components increases, and vice versa

    On the accretion mode of the intermediate polar V1025 Centauri

    Get PDF
    The long white-dwarf spin periods in the magnetic cataclysmic variables EX Hya and V1025 Cen imply that if the systems possess accretion discs then they cannot be in equilibrium. It has been suggested that instead they are discless accretors in which the spin-up torques resulting from accretion are balanced by the ejection of part of the accretion flow back towards the secondary. We present phase-resolved spectroscopy of V1025 Cen aimed at deducing the nature of the accretion flow, and compare this with simulations of a discless accretor. We find that both the conventional disc-fed model and the discless-accretor model have strengths and weaknesses, and that further work is needed before we can decide which applies to V1025 Cen.Comment: 9 pages, 8 figures, To appear in MNRAS, includes low-res figures to reduce siz

    Fe K emission and absorption features in XMM-Newton spectra of Mkn 766 - evidence for reprocessing in flare ejecta

    Full text link
    We report on the analysis of a long XMM-Newton EPIC observation in 2001 May of the Narrow Line Seyfert 1 galaxy Mkn 766. The 3-11 keV spectrum exhibits a moderately steep power law continuum, with a broad emission line at ~6.7 keV, probably blended with a narrow line at ~6.4 keV, and a broad absorption trough above ~8.7 keV. We identify both broad spectral features with reprocessing in He-like Fe. An earlier XMM-Newton observation of Mkn 766 in 2000 May, when the source was a factor ~2 fainter, shows a similar broad emission line, but with a slightly flatter power law and absorption at a lower energy. In neither observation do we find a requirement for the previously reported broad 'red wing' to the line and hence of reflection from the innermost accretion disc. More detailed examination of the longer XMM-Newton observation reveals evidence for rapid spectral variability in the Fe K band, apparently linked with the occurrence of X-ray 'flares'. A reduction in the emission line strength and increased high energy absorption during the X-ray flaring suggests that these transient effects are due to highly ionised ejecta associated with the flares. Simple scaling from the flare avalanche model proposed for the luminous QSO PDS 456 (Reeves etal. 2002) confirms the feasibility of coherent flaring being the cause of the strong peaks seen in the X-ray light curve of \mkn.Comment: 9 pages, 11 figures, submitted to MNRA

    A COMPARATIVE STUDY OF THE ULTRASTRUCTURE OF MICROVILLI IN THE EPITHELIUM OF SMALL AND LARGE INTESTINE OF MICE

    Get PDF
    A comparative analysis of the fine structure of the microvilli on jejunal and colonic epithelial cells of the mouse intestine has been made. The microvilli in these two locations demonstrate a remarkably similar fine structure with respect to the thickness of the plasma membrane, the extent of the filament-free zone, and the characteristics of the microfilaments situated within the microvillous core. Some of the core microfilaments appear to continue across the plasma membrane limiting the tip of the microvillus. The main difference between the microvilli of small intestine and colon is in the extent and organization of the surface coat. In the small intestine, in addition to the commonly observed thin surface "fuzz," occasional areas of the jejunal villus show a more conspicuous surface coat covering the tips of the microvilli. Evidence has been put forward which indicates that the surface coat is an integral part of the epithelial cells. In contrast to the jejunal epithelium, the colonic epithelium is endowed with a thicker surface coat. Variations in the organization of the surface coat at different levels of the colonic crypts have also been noted. The functional significance of these variations in the surface coat is discussed

    Biology of chronic graft-versus-host disease: implications for a future therapeutic approach.

    Get PDF
    Hematopoietic cell transplantation (HCT) is frequently complicated by graft-versus-host disease (GVHD). During the past three decades, experimental studies and clinical observations have elucidated the pathophysiology of acute GVHD, but the biology of chronic GVHD is much less well understood. Recommendations of the NIH Consensus Development Project on Criteria for Clinical Trials in Chronic GVHD have begun to standardize the diagnosis and clinical assessment of the disease. These criteria have emphasized the importance of qualitative differences, as opposed to time of onset after HCT, in making the distinction between acute and chronic GVHD. Experimental studies have generated at least four theories to explain the pathophysiology of chronic GVHD. These theories include 1) thymic damage and defective negative selection of T cells generated from marrow progenitors after HCT, 2) aberrant production of transforming growth factor-beta, 3) auto-antibody production, and 4) deficiency of T-regulatory cells. Recent studies in humans have corroborated a possible role for each of these mechanisms in humans. No animal model fully replicates all of the features of chronic GVHD in humans, and it appears likely that multiple biological mechanisms account for the diverse features the disease. Chronic GVHD may represent a "syndrome" with diverse causes among individual patients. In the future, it might become possible to tailor specific therapeutic interventions for patients as individually needed for each distinct pathophysiologic mechanism involved in development of the disease

    Broadband modelling of short gamma-ray bursts with energy injection from magnetar spin-down and its implications for radio detectability

    Get PDF
    The magnetar model has been proposed to explain the apparent energy injection in the X-ray light curves of short gamma-ray bursts (SGRBs), but its implications across the full broadband spectrum are not well explored. We investigate the broadband modelling of four SGRBs with evidence for energy injection in their X-ray light curves, applying a physically motivated model in which a newly formed magnetar injects energy into a forward shock as it loses angular momentum along open field lines. By performing an order of magnitude search for the underlying physical parameters in the blast wave, we constrain the characteristic break frequencies of the synchrotron spectrum against their manifestations in the available multi-wavelength observations for each burst. The application of the magnetar energy injection profile restricts the successful matches to a limited family of models that are self-consistent within the magnetic dipole spin-down framework.We produce synthetic light curves that describe how the radio signatures of these SGRBs ought to have looked given the restrictions imposed by the available data, and discuss the detectability of these signatures with present-day and near-future radio telescopes. Our results show that both the Atacama Large Millimetre Array and the upgraded Very Large Array are now sensitive enough to detect the radio signature within two weeks of trigger in most SGRBs, assuming our sample is representative of the population as a whole. We also find that the upcoming Square Kilometre Array will be sensitive to depths greater than those of our lower limit predictions.Comment: 15 pages, 4 figures, 6 tables, accepted for publication in MNRA

    Origin of electron cyclotron maser-induced radio emissions at ultra-cool dwarfs: magnetosphere-ionosphere coupling currents

    Full text link
    A number of ultra-cool dwarfs emit circularly polarised radio waves generated by the electron cyclotron maser instability. In the solar system such radio is emitted from regions of strong auroral magnetic field-aligned currents. We thus apply ideas developed for Jupiter's magnetosphere, being a well-studied rotationally-dominated analogue in our solar system, to the case of fast-rotating UCDs. We explain the properties of the radio emission from UCDs by showing that it would arise from the electric currents resulting from an angular velocity shear in the fast-rotating magnetic field and plasma, i.e. by an extremely powerful analogue of the process which causes Jupiter's auroras. Such a velocity gradient indicates that these bodies interact significantly with their space environment, resulting in intense auroral emissions. These results strongly suggest that auroras occur on bodies outside our solar system.Comment: Accepted for publication in the Astrophysical Journa

    Promoting Postformal Thinking In A U.S. History Survey Course: A Problem-Based Approach

    Get PDF
    This article presents a problem-based learning (PBL) model for teaching a college U.S. history survey course (U.S. history since 1890) designed to promote postformal thinking skills and identify and explain thinking systems inherent in adult complex problem-solving. We also present the results of a study in which the outcomes of the PBL model were compared to the outcomes of the same course taught with traditional lecture and discussion. The PBL model was more effective in scaffolding learning so that students recognize and practice postformal thinking dynamics and in facilitating self-reported student perceptions of increased course engagement and content relevance. We offer recommendations for implementing PBL in social science survey courses
    • …
    corecore