85 research outputs found

    Low-carbon development via greening global value chains:A case study of Belarus

    Get PDF
    The rise of global value chains (GCVs) has seen the transfer of carbon emissions embodied in every step of international trade. Building a coordinated, inclusive and green GCV can be an effective and efficient way to achieve carbon emissions mitigation targets for countries that participate highly in GCVs. In this paper, we first describe the energy consumption as well as the territorial and consumption-based carbon emissions of Belarus and its regions from 2010 to 2017. The results show that Belarus has a relatively clean energy structure with 75% of Belarus' energy consumption coming from imported natural gas. The 'chemical, rubber and plastic products' sector has expanded significantly over the past few years; its territorial-based emissions increased 10-fold from 2011 to 2014, with the 'food processing' sector displaying the largest increase in consumption-based emissions. An analysis of regional emissions accounts shows that there is significant regional heterogeneity in Belarus with Mogilev, Gomel and Vitebsk having more energy-intensive manufacturing industries. We then analysed the changes in Belarus' international trade as well as its emission impacts. The results show that Belarus has changed from a net carbon exporter in 2011 to a net carbon importer in 2014. Countries along the Belt and Road Initiative, such as Russia, China, Ukraine, Poland and Kazakhstan, are the main trading partners and carbon emission importers/exporters for Belarus. 'Construction' and 'chemical, rubber and plastic products' are two major emission-importing sectors in Belarus, while 'electricity' and 'ferrous metals' are the primary emission-exporting sectors. Possible low-carbon development pathways are discussed for Belarus through the perspectives of global supply and the value chain

    The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems

    Get PDF
    In economic systems, the mix of products that countries make or export has been shown to be a strong leading indicator of economic growth. Hence, methods to characterize and predict the structure of the network connecting countries to the products that they export are relevant for understanding the dynamics of economic development. Here we study the presence and absence of industries at the global and national levels and show that these networks are significantly nested. This means that the less filled rows and columns of these networks' adjacency matrices tend to be subsets of the fuller rows and columns. Moreover, we show that nestedness remains relatively stable as the matrices become more filled over time and that this occurs because of a bias for industries that deviate from the networks' nestedness to disappear, and a bias for the missing industries that reduce nestedness to appear. This makes the appearance and disappearance of individual industries in each location predictable. We interpret the high level of nestedness observed in these networks in the context of the neutral model of development introduced by Hidalgo and Hausmann (2009). We show that, for the observed fills, the model can reproduce the high level of nestedness observed in these networks only when we assume a high level of heterogeneity in the distribution of capabilities available in countries and required by products. In the context of the neutral model, this implies that the high level of nestedness observed in these economic networks emerges as a combination of both, the complementarity of inputs and heterogeneity in the number of capabilities available in countries and required by products. The stability of nestedness in industrial ecosystems, and the predictability implied by it, demonstrates the importance of the study of network properties in the evolution of economic networks.Comment: 26 page

    Global value trees

    Get PDF
    The fragmentation of production across countries has become an important feature of the globalization in recent decades and is often conceptualized by the term “global value chains” (GVCs). When empirically investigating the GVCs, previous studies are mainly interested in knowing how global the GVCs are rather than how the GVCs look like. From a complex networks perspective, we use the World Input-Output Database (WIOD) to study the evolution of the global production system. We find that the industry-level GVCs are indeed not chain-like but are better characterized by the tree topology. Hence, we compute the global value trees (GVTs) for all the industries available in the WIOD. Moreover, we compute an industry importance measure based on the GVTs and compare it with other network centrality measures. Finally, we discuss some future applications of the GVTs

    World input-output network

    Get PDF
    Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries

    Die Input-Output-Analyse

    No full text

    Dmitriev, Vladimir Karpovich (1868–1913)

    No full text
    corecore