91 research outputs found
Inadequate glucose control in type 2 diabetes is associated with impaired lung function and systemic inflammation: a cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Inadequate glucose control may be simultaneously associated with inflammation and decreased lung function in type 2 diabetes. We evaluated if lung function is worse in patients with inadequate glucose control, and if inflammatory markers are simultaneously increased in these subjects.</p> <p>Methods</p> <p>Subjects were selected at the Colombian Diabetes Association Center in Bogotá. Pulmonary function tests were performed and mean residual values were obtained for forced expiratory volume (FEV<sub>1)</sub>, forced vital capacity (FVC) and FEV<sub>1</sub>/FVC, with predicted values based on those derived by Hankinson et al. for Mexican-Americans. Multiple least-squares regression was used to adjust for differences in known determinants of lung function. We measured blood levels of glycosylated hemoglobin (HBA<sub>1c</sub>), interleukin 6 (IL-6), tumor necrosis factor (TNF-α), fibrinogen, ferritin, and C-reactive protein (C-RP).</p> <p>Results</p> <p>495 diabetic patients were studied, out of which 352 had inadequate control (HBA<sub>1c </sub>> 7%). After adjusting for known determinants of lung function, those with inadequate control had lower FEV<sub>1 </sub>(-75.4 mL, IC95%: -92, -59; P < 0.0001) and FVC (-121 mL, IC95%: -134, -108; P < 0,0001) mean residuals, and higher FEV<sub>1</sub>/FVC (0.013%, IC95%: 0.009, 0.018, P < 0.0001) residuals than those with adequate control, as well as increased levels of all inflammatory markers (P < 0.05), with the exception of IL-6.</p> <p>Conclusions</p> <p>Subjects with type 2 diabetes and inadequate control had lower FVC and FEV<sub>1 </sub>than predicted and than those of subjects with adequate control. It is postulated that poorer pulmonary function may be associated with increased levels of inflammatory mediators.</p
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules
Enhancing the robustness of functional biomacromolecules is a critical challenge in biotechnology, which if addressed would enhance their use in pharmaceuticals, chemical processing and biostorage. Here we report a novel method, inspired by natural biomineralization processes, which provides unprecedented protection of biomacromolecules by encapsulating them within a class of porous materials termed metal-organic frameworks. We show that proteins, enzymes and DNA rapidly induce the formation of protective metal-organic framework coatings under physiological conditions by concentrating the framework building blocks and facilitating crystallization around the biomacromolecules. The resulting biocomposite is stable under conditions that would normally decompose many biological macromolecules. For example, urease and horseradish peroxidase protected within a metal-organic framework shell are found to retain bioactivity after being treated at 80 °C and boiled in dimethylformamide (153 °C), respectively. This rapid, low-cost biomimetic mineralization process gives rise to new possibilities for the exploitation of biomacromolecules.Kang Liang, Raffaele Ricco, Cara M. Doherty, Mark J. Styles, Stephen Bell, Nigel Kirby, Stephen Mudie, David Haylock, Anita J. Hill, Christian J. Doonan, Paolo Falcar
Tearing-mode stability of a forming spheromak plasma
The results of numerical calculations of A* for a class of equilibria typical of those encountered during the early formation stage of the SI Spheromak are presented. The equilibrium plasma is assumed to be cylindrically symmetric and pressureless. It encloses a current-carrying perfect conductor (flux core) and is surrounded by a vacuum with zero longitudinal field. Stability boundaries in the space formed by the equilibrium parameters are mapped. The plasma is tearing-mode-stable provided BzBg at the flux core is below a certain critical value which depends on the equilibrium parameters. For typical equilibria this critical value is 0.65. © 1982 IOP Publication Ltd
Some lessons about models from Michaelis and Menten
Michaelis and Menten's classic 1913 paper on enzyme kinetics is used to draw some lessons about the relationship between mathematical models and biological reality
- …